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a b s t r a c t

Lindsay (1994) provided a general set up in discretemodels forminimumdisparity estima-
tion. Such a set up eludes us in continuous models. We provide such a general result and
hence fill up a major gap in the literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In density-basedminimum distance estimation oneminimizes a discrepancy between a nonparametric density estimate
obtained from the sample and the parametric model density. In discrete models a natural choice for this nonparametric
estimate is provided by observed relative frequencies in the sample. In continuousmodels one needs a technique like kernel
density estimation; this complicates the method and one now has to worry about the conditions on the model and the
conditions on the kernel bandwidth.

Beran’s (1977) work was the first useful application of the density-based minimum distance estimation method with
a robustness motivation. Minimum Hellinger distance estimation was further studied by Tamura and Boos (1986) and
Simpson (1987, 1989). Lindsay (1994) presented a comprehensive treatment of density-basedminimumdistance estimation
in discrete models covering the class of chi-square type distances, called disparities.

Basu and Lindsay (1994) provided a similar treatment in the continuous case where the model was smoothed with the
same kernel. This reduces the dependence on the bandwidth. However this method requires a transparent kernel for full
asymptotic efficiency, which may be difficult to obtain.

A complete framework of minimum disparity estimation for continuous models, which would parallel Lindsay’s (1994)
work for discrete models, does not exist in the literature. The closest approximation to a general framework that the
literature offers is the work by Park and Basu (2004). Although this work covers a large number of candidate disparities, it
imposes strong conditions on the disparities, and as a result this framework also excludes a fair number of useful disparities,
including the Hellinger distance.

In this paper we provide this general framework under simple conditions. Our proof consolidates the existing elements
in the literature into a set of more inclusive assumptions. Our framework includes practically all disparities which are of
interest in robust estimation; our conditions are even more accessible than Lindsay’s discrete model conditions. We do not
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describe the robustness of the estimators here as we feel that the breakdown point results of Park and Basu (2004) are
sufficiently general.

In Section 2, we introduceminimum disparity estimation. In Section 3, we state the required assumptions and derive the
asymptotic distribution of the estimator. This is done by proving the asymptotic normality of the estimating function and
by establishing the uniform convergence of the derivative of the estimating function to a non-stochastic function.

2. Minimum disparity estimation

Let G represent the class of all distribution functions having densities with respect to the Lebesgue measure. We assume
that the true distribution G and the model Fθ = {Fθ : θ ∈ Θ} belong to G. Let g and fθ be the corresponding densities. Let
X1, X2, . . . , Xn be a random sample from G which is modelled by Fθ . Our aim is to estimate the parameter θ by choosing
the model density which gives the closest fit to the data. We assume that the support of fθ is independent of θ which is the
same as the support of g .

Let C be a thrice differentiable convex function defined on [−1, ∞), satisfying C(0) = 0. Define

ρC (g, fθ ) =


C


g(x)
fθ (x)

− 1

fθ (x)dx.

This form describes the class of disparities between the densities g and fθ . A simple application of Jensen’s inequality shows
that ρC (g, fθ ) ≥ 0 with equality if and only if g = fθ identically. We denote by T (G), the ‘‘best fitting parameter’’ which
minimizes ρC (g, fθ ) over all θ ∈ Θ . We consider the minimum disparity estimator θ̂n of θ defined by

θ̂n := argmin
θ

ρC (gn, fθ ),

where gn is a kernel density estimator obtained from the sample. Under differentiability of the model, θ̂n can be obtained as
a root of the equation

A(δn(x))∇fθ (x)dx = 0, (1)

where ∇ represents the gradient with respect to θ, A(δ) = C ′(δ)(δ + 1) − C(δ) and δn(x) + 1 = gn(x)/fθ (x). This function
A(·) is called the residual adjustment function (RAF) of the disparity and δn is referred to as the Pearson residual. The function
A(·) plays a very crucial role in determining the robustness properties of the estimator. See Basu et al. (2011) formore details.
Denote by Ψn(θ) the expression on the left-hand side of Eq. (1); Ψn(θ) is our estimating function.

3. Asymptotic distribution of the estimator

3.1. Assumptions

Consider the parametric set up of the previous section.Wewill estimate θ byminimizing the disparityρC (gn, fθ ) between
a kernel density estimator gn and the model density fθ . The estimator gn based on independent and identically distributed
observations X1, X2, . . . , Xn is given by

gn(x) =
1

nhn

n
i=1

K

x − Xi

hn


,

where K is a suitable kernel function and hn is the bandwidth. We will use the notation uθ (x) for ∇ log fθ (x).
Here we present the set of conditions under which the necessary asymptotic results will be derived. In the following A(δ)

will represent the residual adjustment function of the disparity ρC ; for simplicity of notation we will drop the subscript n
from hn, unless specifically demanded by the situation.

(A1) A′′(δ)(δ + 1)α is bounded for some fixed α, i.e., |A′′(δ)(δ + 1)α| ≤ M < ∞ for some α and for all δ ≥ −1, where
1 + δ(x) = g(x)/fθ (x). All the other instances of α in the assumptions relate to this specific value.

(A2) The density g is twice differentiable and g ′′ is bounded. Also, g is uniformly continuous.
(A3) (n1/2h)−1


|λn(x)|dx → 0 as n → ∞, where λn(x) = 1{|x|≤τn}

g1−α

f 1−α
θ

|uθ |, τn is a sequence such that τn → ∞ as

n → ∞. Here 1{A} denotes the indicator function of set A. Define εn(x) = 1{|x|>τn}g
1−α

|uθ |/f 1−α
θ .

(A4) The kernel K is symmetric and is supported on a compact support denoted by Ω; h → 0, nh → ∞, nh/ log n →

∞, n1/2h2
→ 0 as n → ∞.

(A5) Mn ≡ sup|x|≤τn supt∈Ω g(x + ht)/g(x) = O(1), as n → ∞.
(A6) n supt∈Ω P(|X1 − hnt| > τn) → 0 as n → ∞.
(A7) For θ = T (G), the best fitting parameter,
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