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a b s t r a c t

Two-color triangular urn models have been investigated recently. Moments of ball
counts of a particular color have been obtained exactly and asymptotically in a number
of sources (Janson, 2006, Kuba and Panholzer, 2014, and Flajolet et al., 2006). Exact
factorial moments are in Kuba and Panholzer (2014). While Flajolet et al. (2006) gives
an exact distribution, finding the exact moments from it is daunting. The asymptotic
moments in Janson (2006) are derived by heavy machinery—the limit distribution in
Janson (2006) is extracted from complicated characteristic functions in the form of
integrals that they themselves include functions given by complicated integrals. The
methods used in most of these investigations are quite sophisticated. In this note, we
characterize the exact moments via an elementary approach. The formulas for the exact
moments include Stirling’s numbers of second kind and the asymptotic moments follow
effortlessly.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many evolutionary processes (such as gas diffusion, Ehrenfest and Ehrenfest, 1907, and contagion, Eggenberger and
Pólya, 1923) are modeled by the versatile Pólya urn. After the classic work on these models was disseminated, numerous
investigations were published on variations and generalizations of the subject. The theory expanded to cover many
applications in diverse fields, such as engineering, economics, and experimental and social sciences. The number of papers
published on such applications is literally in the thousands, and it is not possible to even list concisely a consistent subset
covering all the theoretical works and applications. We only give a reference to the books Johnson and Kotz (1977) and
Mahmoud (2008), where hundreds of additional references can be found.

While a theory for many Pólya urn models had been quickly developed, the triangular flavor remained defiant until very
recently. It should be noted that the existence of the moments under appropriate scaling is reported by Gouet (1993). The
triangular case has been handled in Janson (2006) and limit distributions have been characterized. Also, alternative char-
acterizations are given in Kuba and Mahmoud (in preparation) and Flajolet et al. (2006). The asymptotic characterization
in Janson (2006) is derived by heavy machinery. The limiting characteristic function involves integrals of complicated func-
tions that they themselves involve complicated integrals. The exact characterization in Flajolet et al. (2006) does not lend
itself easily to exact moment calculations. Such an exact moment calculation involves sums, with a number of summands
that steadily increases as the ball drawing continues. The exact factorial moments have very recently computed in Kuba and
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Panholzer (2014), and it is not hard to extract the plain moments from them. However, the first two of these three refer-
ences use rather sophisticated methods. For instance, Janson (2006) uses branching process and martingales, while Flajolet
et al. (2006) uses analytic combinatorics based on systems of differential equations. On the other hand, Kuba and Panholzer
(2014) uses a simpler method based on mixed Poisson distributions, and some elements in moment calculations are done
in a similar spirit to the present study.

It is our aim in this note to rederive the exact moments by elementarymethods, whichmight be an alternative technique
for many similar urn problems. Asymptotic moments follow easily from our presentation.

2. Triangular Pólya urns

A two-color Pólya urn scheme is an urn containing balls of two different colors (say white and blue). At each point of
discrete time we draw a ball from the urn at random, observe its color and put it back in the urn, and then execute some ball
additions according to predesignated rules: if the ball withdrawn is white, we add α white balls and β blue balls; otherwise
the ball withdrawn is blue, in which case we add γ white balls and δ blue balls. The four numbers α, β, γ , δ are in N ∪ {0}.
More generally, there are other variations where the ‘‘additions’’ are allowed to be negative (i.e., upon withdrawing a color
we take balls of some color out of the urn). In these models tenability becomes an issue. We shall not consider urn schemes
with ball removal in this note, as they are not in the scope of the urn model to be discussed.

The dynamics of the urn can thus be represented by the replacement matrix
α β
γ δ


,

in which the rows from top to bottom are indexed by white and blue, and the columns from left to right are also indexed by
white and blue; entry (i, j) is the number of balls of color j that we add upon withdrawing a ball of color i.

We consider balanced urns, where the number of balls added is a constant, no matter which color appears in the sample.
Urn schemes with replacement matrix of the form

α β
0 δ


are called triangular. The case α = 0 is degenerate and will be excluded from further study. We also exclude the case
β = 0, as it is the well-studied Eggenberger–Pólya urn; see Eggenberger and Pólya (1923). Developing a theory for balanced
triangular urns took a long time after the inception of Pólya urns, let alone triangular schemes that are not balance (and as
of yet, there is no complete analysis known for them). We intend to give a characterization by moments of the associated
distribution of balanced triangular urn schemes. In such urn models the constant number of balls added after each draw is
δ, and necessarily β = δ − α.

Let Wn be the number of white balls in a balanced triangular urns after n draws. We characterize the moments of Wn
exactly with a formula involving Stirling numbers of the second kind. This characterization is different from those in Kuba
and Mahmoud (in preparation).

We also characterize themoments ofWn asymptotically—we shall show that the correct normalization factor is nα/δ , and
that Wn/nα/δ converges in distribution to a random variable uniquely determined by its moments, which involves Gamma
functions. This characterization in the limit recovers the result in Flajolet et al. (2006), derived via systems of differential
equations; we only employ an elementary induction. The characterization is different from that in Janson (2006).

3. Characterization of the moments

To avoid degeneracy, assumeW0 ≥ 1. After n draws, the balanced triangular urn contains a total τn = δn + τ0 balls. We
only focus on white balls; when we pick a white ball, we add α of them at a time. So, we have a stochastic recurrence for
the number of white balls after n draws:

Wn = Wn−1 + α I(W )
n , (1)

where I(W )
n is an indicator of the event of picking a white ball in the nth draw.

The result of this note is in terms of the standard numbers
 r

j


, which are Stirling’s numbers of the second kind. These

are the number of ways to partition a set of r distinct objects into j nonempty parts. These classic numbers are discussed
thoroughly in texts like David and Barton (1962) and Graham et al. (1994).

The proof will be facilitated via the use of Pochhammer’s symbols for the falling and rising factorials. The symbol for the
falling factorial is

(x)s = x(x − 1) · · · (x − s + 1),
for any x ∈ R, and any integer s ≥ 0, with the interpretation that (x)0 = 1. Pochhammer’s symbol for the rising factorial is

⟨x⟩s = x(x + 1) · · · (x + s − 1),
for any x ∈ R, and any integer s ≥ 0, with the interpretation that ⟨x⟩0 = 1. Note the connection ⟨x⟩s = (−1)s(−x)s.

We need the following identity in the proof of the main theorem.
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