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a b s t r a c t

We consider minimax shrinkage estimation of location for spherically symmetric
distributions under a concave function of the usual squared error loss. Scale mixtures of
normal distributions and losses with completely monotone derivatives are featured.
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1. Introduction

This paper concerns minimax shrinkage estimation of a location vector of a spherically symmetric distribution under
a loss function which is a concave function of the usual squared error loss. The main contribution is an improvement in
shrinkage constants for minimax estimators over those in Brandwein and Strawderman (1980, 1991), and Brandwein et al.
(1993), particularly for variance mixtures of normals (and somewhat more generally), and for concave functions of squared
error loss for which the derivative of the concave function is completely monotone (and somewhat more generally). For
Baranchik-type estimators and for scale mixtures of multivariate normal distributions, we also show that our minimax
improvements hold in dimension 3 which improves over the restriction that p ≥ 4 in the earlier papers.

Specifically, let X have the p-dimensional spherically symmetric density

f (∥x − θ∥
2), x, θ ∈ Rp, (1.1)

and consider the problem of estimating the unknown location vector θ under the loss function

L(θ, d) = l(∥d − θ∥
2), (1.2)

where l(t) is a non-negative, non-decreasing concave function, and ∥d − θ∥
2 is the usual squared error loss function.
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For a multivariate normal distribution with squared error loss, James and Stein (1961), Baranchik (1970), Strawderman
(1971), Stein (1981) and others gave shrinkage estimators of the mean vector which are minimax and which improve on
the usual estimator, X , when the dimension, p, is at least three. Strawderman (1974) gave extensions to variance mixtures
of normals. Extensions to wider classes of spherically symmetric distributions were provided by Berger (1975), Brandwein
and Strawderman (1978), Brandwein (1979), Brandwein and Strawderman (1991) and others.

Brandwein and Strawderman (1980), Brandwein and Strawderman (1991) and Brandwein et al. (1993) gave minimax
shrinkage estimators which improve on X in higher dimensions for concave functions of squared error loss.

A basic tool in much of the literature on concave loss is the following simple result which will be used extensively in the
following.

Lemma 1.1. Suppose that X is distributed as in (1.1), and that loss is given by (1.2), where l(t) is a non-negative, non-decreasing
concave function such that l′(t) exists.

a. Then the risk, R(θ, δ), of an estimator of the form δ(X) = X + g(X), satisfies the inequality

R(θ, δ) ≤ R(θ, X) + Eθ [l′(∥X − θ∥
2)(∥g(X)∥2

− 2(X − θ)′g(X))], (1.3)

where the expectation Eθ is with respect to the density (1.1).
b. Hence δ(X) dominates X under loss (1.2) if it dominates X under quadratic loss, ∥d − θ∥

2, for a location family with density
f ∗(∥x − θ∥

2) proportional to f (∥x − θ∥
2)l′(∥x − θ∥

2).

Proof. Part a follows easily, on taking expectations, from the concave function inequality l(t + y) ≤ l(t) + yl′(t) with
t = ∥X − θ∥

2 and y = ∥g(X)∥2
+ 2(X − θ)′g(X).

Part b follows immediately from part a. �

Remark 1.1. That the usual estimator X is minimax follows fairly easily when the underlying spherically symmetric density
(1.1) is unimodal and when the loss function (1.2) is monotone (but not necessarily concave) in ∥d − θ∥

2. This follows
because X is the unique minimum risk equivariant (MRE) estimator under these assumptions and is hence minimax by the
well known result that if a minimax estimator exists in a location problem, there is an equivariant minimax estimator. For
completeness we formalize this in Theorem 1.1.

Theorem 1.1. Suppose that the density f (∥X − θ∥
2) is unimodal and that ℓ′(t) ≥ 0 with ℓ′(t) > 0 on an interval. Then, the

usual estimator X is the unique minimum risk equivariant (MRE) estimator, and is hence minimax.

Proof. Note first that a general equivariant estimator is of the form X + d for some vector d in ℜ
p, which because of the

spherical symmetrywemay take to be of the form (a, 0, . . . , 0). Let Y = (X2, . . . , Xp), let ℓY ((X1−a)2) = ℓ((X1−a)2+∥Y∥
2).

Then, conditioning on Y , it suffices to show that E[ℓY ((X1 − a)2)|Y ] > E[ℓY (X2
1 )|Y ] for a ≠ 0, where E represents the

expectation with respect to the conditional distribution of X1 given Y . Let fY ((x1 −a)2) be the conditional density of X1 given
Y . The conditional risk difference is expressed as

∆Y (a) = E[ℓY ((X1 − a)2)|Y ] − E[ℓY (X2
1 )|Y ] = E

 a

0

d
dt

ℓY ((X1 − t)2)dt|Y


= 2


∞

−∞

 a

0
(t − x)ℓ′

Y ((x − t)2)fY (x2)dtdx

= 2


∞

−∞

 a

0
(−z)ℓ′

Y (z
2)fY ((z + t)2)dtdz

= 2


∞

−∞

(−z)ℓ′

Y (z
2)

 a+z

z
fY (u2)dudz,

where we used the transformations z = x − t (dz = dx) and u = t + z (du = dt). Let FY (z) =
 z
−∞

fY (u2)du. Then, we can
rewrite the conditional risk difference as

∆Y (a) = 2


∞

−∞

zℓ′

Y (z
2){FY (z) − FY (z + a)}dz

= 2


∞

0
zℓ′

Y (z
2)


{FY (z) − FY (z + a)} − {FY (−z) − FY (−z + a)}


dz

= 2


∞

0
zℓ′

Y (z
2)


{FY (z) − FY (−z)} − {FY (z + a) − FY (−z + a)}


dz

= 2


∞

0
zℓ′

Y (z
2)

 z

−z
fY (u2)du −

 z+a

−z+a
fY (u2)du


dz.
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