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a b s t r a c t

We compute a closed-form expression for the moment generating function f̂ (x; λ, α) =
1
λ
Ex(eαLτ ), where Lt is the local time at zero for standard Brownian motion with reflecting

barriers at 0 and b, and τ ∼ Exp(λ) is independent of W . By analyzing how and where
f̂ (x; ·, α) blows up in λ, a large-time large deviation principle (LDP) for Lt/t is established
using a Tauberian result and the Gärtner–Ellis Theorem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion processes with reflecting barriers have found many applications in finance, economics, biology, queueing
theory, and electrical engineering. In a financial context, we recall the currency exchange rate target-zone models in
Krugman (1991) (see also Svensson, 1991, Bertola and Caballero, 1992, De Jong, 1994, and Ball and Roma, 1998), where
the exchange rate is allowed the float within two barriers; asset pricing models with price caps (see Hanson et al., 1999);
interest rate models with targeting by the monetary authority (e.g. Farnsworth and Bass, 2003); short rate models with
reflection at zero (e.g. Goldstein and Keirstead, 1997, Gorovoi and Linetsky, 2004); and stochastic volatility models (most
notably the Heston and Schöbel–Zhu models). In queueing theory, diffusions with reflecting barriers arise as heavy-traffic
approximations of queueing systems and reflected Brownian motions is ubiquitous in queueing models (Harrison, 1985;
Abate and Whitt, 1987a,b). More recently, reflected Ornstein–Uhlenbeck (OU) and reflected affine processes have been
studied as approximations of queueing systems with reneging or balking (Ward and Glynn, 2003a,b). Applications of
reflected OU processes in mathematical biology are discussed in Ricciardi and Sacerdote (1987). Doubly reflected Brownian
motion also arises naturally in the solution for the optimal trading strategy in the large-time limit for an investor who is
permitted to trade a safe and a risky asset under the Black–Scholes model, subject to proportional transaction costs with
exponential or power utility (see Guasoni and Muhle-Karbe, in press and Gerhold et al., 2014 respectively).

The asymptotics in this article are obtained using a Tauberian theorem. Tauberian results typically allow us to deduce
the large-time or tail behavior of a quantity of interest based on the behavior of its Laplace transform (see Feller, 1971 or
the excellent monograph of Bingham et al., 1987 for details or Benaim and Friz, 2008 for applications to tail asymptotics for
time-changed exponential Lévy models). In this article, we compute a closed-form expression for the moment generating
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function (mgf) f̂ (x; λ, α) =
1
λ
Ex(eαLτ ), where Lt is the local time at zero for standard Brownian motion with reflecting

barriers at 0 and b, and τ is an independent exponential random variable with parameter λ. We do this by first deriving the
relevant ODE and boundary conditions for f̂ (x; λ, α) using an augmented filtration and computing the optional projection,
and we then solve this ODE in closed form. f̂ (x; λ, α) does not appear amenable to Laplace inversion; however from an
analysis of the location of the pole of f̂ (x; ·, α), we can compute the re-scaled log mgf limit V (α) = limt→∞

1
t logEx(eαLt )

for α ∈ R using the Tauberian result in Proposition 4.3 in Korevaar (2002) via the so-called Fejér kernel. From this we then
establish a large deviation principle for Lt/t as t → ∞ using the Gärtner–Ellis Theorem from large deviations theory,

Throughout the paper, we let Px(·) = P(·|X0 = x) denote the law of X given its initial value at time 0 for any x ∈ [0, b],
and by Ex(·) the expectation under Px. Further, we let E ≡ E0.

2. The modeling set up

We begin by defining the Brownian motion X with two reflecting boundaries. Let Wt be standard Brownian motion
starting at 0. Then for any x ∈ [0, b], there is a unique pair of non-decreasing, continuous adapted processes (L,U), starting
at 0, such that

Xt = x + Wt + Lt − Ut ∈ [0, b], ∀t ≥ 0

such that L can only increase when X = 0 and Ut can only increase when X = b. Existence and uniqueness follow easily
from the more general work of Lions and Sznitman (1984), the earlier work of Skorohod (1962), or a bare-hands proof can
be given by successive applications of the standard one-sided reflection mapping using a sequence of stopping times (see
Williams, 1992).

It can be shown that

lim
t→∞

Lt/t = E(Lτb+τ ′)/E(τ b
+ τ ′), lim

t→∞
Ut/t = E(Uτb+τ ′)/E(τ b

+ τ ′),

lim
t→∞

1
t
Var(Lt) = σ 2

L , lim
t→∞

1
t
Var(Ut) = σ 2

U ,

where τ b
= inf{t : Xt = b}, τ ′

= inf{t ≥ τ b
: Xt = 0} (see Williams, 1992) for some non-negative constants σL, σU .

Proposition 2.1. Let τ denote an independent exponential random variable with parameter λ. Then for α < 0,

f̂ (x) ≡ f̂ (x; λ, α) :=
1
λ

Ex(eαLτ ) =


∞

0
e−λt Ex(eαLt )dt

is smooth on (0, b) and satisfies the following ODE

1
2
f̂xx = λf̂ − 1, f̂x(0) + α f̂ (0) = f̂x(b) = 0. (1)

Proof. We first show that f̂ ∈ C∞(0, b). To this end, note that for x ∈ [0, b],

Ex(eαLτ ) = Px(τ > H0) E0(eαLτ ) + Px(τ ≤ H0)

where Hx = inf{t : Xt = x} is the first hitting time to x. The law of (b − Xt; t ∈ [0,H0]) given Xt = x is the same as that of
(|Wt |; t ∈ [0,Hb]) given |W0| = b − x. Thus by Eq. 2.0.1 on p. 355 of Borodin and Salminen (2002) we have

Px(τ > H0) = Ex(e−λH0) =
cosh((b − x)

√
2λ)

cosh(b
√
2λ)

.

It follows that

Ex(eαLτ ) =
cosh((b − x)

√
2λ)

cosh(b
√
2λ)

[E0(eαLτ ) − 1] + 1.

That is,

f̂ (x) =
cosh((b − x)

√
2λ)

cosh(b
√
2λ)


f̂ (0) −

1
λ


+

1
λ

, ∀x ∈ [0, b]. (2)

It can then be easily seen from (2) that f̂ ∈ C∞(0, b).
To show that f̂ satisfies (1) and the boundary conditions, we construct a martingale that is adapted to the filtration

generated by X . More specifically, we introduce the natural filtration Ft = σ(Xs; s ≤ t) and the augmented filtration
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