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a b s t r a c t

The St. Petersburg game is known as a probability model with infinite expectation, and has
some extensions. Gut and Martin-Löf (2013) studied convergence in distribution along a
suitable specific subsequence under their generalization. In this article, we extend their
results using residue analysis investigated by Vardi (1995). We give the explicit limit
distributions via characteristic functionswith gamma functionswhich become semi-stable
or strictly semi-stable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We use notation N := {1, 2, 3, . . .}, Z := {0, ±1, ±2, . . .} and R := (−∞, +∞).

1.1. Background and main results

Let us consider that a fair coin is tossed repeatedly until it falls heads. If this happens at the kth trial then a player receives
2k yen for k ∈ N. It is known as the St. Petersburg game, which has a property that the expectation of the payoff is infinite. This
game has been extensively studied (see e.g. Chapter X.4 of Feller, 1968, Section 6.4.1 of Gut, 2013, and Csörgő, 2010), and
has several kinds of extension by introducing parameters. Among them Gut and Martin-Löf (2013) generalized a random
variable X describing the payoff as follows:

P(X = srk−1) = pqk−1 for k ∈ N, (1)
where s, r > 0 and 0 < q = 1 − p < 1. We call the classical St. Petersburg game if s = r = 2 and p = q = 1/2 in (1), which
is written in Chapter X.4 of Feller (1968).

Let {Xi} be a sequence of independent and identically distributed random variables whose common distribution is given
by (1), and set Sn :=

n
k=1 Xk. If rq < 1, then EX1 < ∞, and as a consequence we apply the classical strong law of large

numbers to Sn. Since the expectation of the payoff should be infinite, we suppose that
rq ≥ 1, (2)

namely EX1 = ∞. Accordingly, the assumption 0 < q < 1 implies that r > 1. Using q and r , we introduce a new parameter

α := −
log q
log r

, (3)
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where log x := loge x and logr x = log x/ log r . Then Eq. (2) yields 0 < α ≤ 1, more precisely α = 1 and 0 < α < 1
correspond to r = 1/q and r > 1/q, respectively.

For the classical St. Petersburg game, Feller (1968) in Chapter X showed that limn→∞ Sn/(n log2 n) = 1 in probability.
In the setting of (2), Gut and Martin-Löf (2013) gave interesting results including extensions of Feller’s weak law of large
numbers (see also Gut, 2013, Section 6.4.1).

Now, it follows from qlog x/ log r
= x−α that

P(X > x) = q1+⌊log(x/s)/ log r⌋
= q1−log s/ log r−⟨log(x/s)/ log r⟩x−α, (4)

where ⌊x⌋ and ⟨x⟩ := x − ⌊x⌋ denote the integer and the fractional parts of x, respectively. Note that the function of
the tail probability x → P(X > x) is not regularly varying at infinity, because the bounded oscillating coefficient of
x−α is not slowly varying. On the other hand, Matsumoto and Nakata (2013) studied the Feller game which looks like the
St. Petersburg game, however fulfills that the corresponding function of the tail probability is regularly varying. Therefore the
Doeblin–Gnedenko theorem (e.g. seeGut, 2013, Theorem3.2) implies that the distribution is in the domain of attraction of an
α-stable distribution. However, in the case of the St. Petersburg game, because of (4) we need to look for other convergence
which is not stable.

Györfi and Kevei (2011) studied truncated random variables for the classical St. Petersburg game, and investigated the
strong law of large numbers and the central limit theorem by varying truncation levels. In addition, Nakata (in press)
extended their results, and investigated a class which can apply their techniques.

Martin-Löf (1985) gave convergence in distribution along a geometric subsequence for the classical St. Petersburg game.
Gut and Martin-Löf (2013) directly extended his results. For convenience, let us put

ξ(n) := Sn/n − s(1 − 1/r) logr n and η(m, n) := Sm/n. (5)

They then obtained as follows:

Theorem 1.1 (Gut and Martin-Löf, 2013).

(i) If α = 1 then

ξ


rn
 D

→ Z1 as n → ∞, (6)

where ‘
D

→’ denotes convergence in distribution, and the random variable Z1 is defined via a characteristic function ϕ1(t) :=

E exp(itZ1) with

logϕ1(t) =

∞
k=−∞


exp(itsrk) − 1 − itsrkck


pqk for ck :=


0, for k > 0,
1, for k ≤ 0. (7)

(ii) If 0 < α < 1 then

η


q−n ,

rn

 D
→ Z2 as n → ∞, (8)

where the random variable Z2 is defined via a characteristic function ϕ2(t) := E exp(itZ2) with

logϕ2(t) =

∞
k=−∞


exp(itsrk) − 1


pqk. (9)

Although Z1 and Z2 were actually treated as Lévy processeswith continuous parameters in Theorem2.2 of Gut andMartin-Löf
(2013), the easy descriptions are adopted here in order to simplify. In this theorem, it is important that normalized random
variables converge in distribution by the specific subsequence. Theorem 1.1 implies that the limit distributions are infinitely
divisible, and have Lévy–Khintchine representations (e.g. see Section 8 of Sato (1999)). Moreover, since some calculus with
respect to (7) and (9) yields

ϕ1(rt)eits(r−1)
= (ϕ1(t))r and ϕ2(rt) = (ϕ2(t))−q , (10)

it follows from Definition 13.1 of Sato (1999) that the distributions of Z1 and Z2 are semi-stable and strictly semi-stable,
respectively. In addition (7) has the form just like Equation 13.3 in Sato (1999). Note that a preliminary result of Theorem 1.1
for the classical St. Petersburg game was proved by Martin-Löf (1985).

On the other hand, Vardi (1995) extended the result of Martin-Löf (1985) from another viewpoint using residue analysis.
This method is similar to a technique of a Mellin transformation which associates a function defined on the positive reals.
For example, a double exponential sum is expanded for x → 0 as follows (see Example 12 of Flajolet et al., 1995):

k≥0

exp(−x2k) = − log2 x −
γ

log 2
+

1
2

+
1

log 2


k∈Z
k≠0

0


−1 +

2kπ i
log 2


e−2kπ i log2 x

+

∞
n=1

(−x)n

n!(1 − 2n)
,
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