A note on the limiting spectral distribution of a symmetrized auto-cross covariance matrix

Zhidong Bai ${ }^{\text {a }}$, Chen Wang ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ KLASMOE and School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, People's Republic of China
${ }^{\mathrm{b}}$ Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore

A R TICLE INFO

Article history:

Received 18 June 2014
Received in revised form 21 August 2014
Accepted 3 October 2014
Available online 26 October 2014

MSC:
primary 60F15
15B52
62H25
secondary 60F05
60F17
Keywords:
Auto-cross covariance
Limiting spectral distribution
Random matrix theory
Stieltjes transform

Abstract

In Jin et al. (2014), the limiting spectral distribution (LSD) of a symmetrized auto-cross covariance matrix is derived using matrix manipulation. The goal of this note is to provide a new method to derive the LSD, which greatly simplifies the derivation in Jin et al. (2014). Moreover, as a by-product, the moment condition of the underlying random variables can be weakened from $2+\delta$ to 2 .

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a large dimensional dynamic k-factor model with lag q taking the form of

$$
\mathbf{R}_{t}=\sum_{i=0}^{q} \boldsymbol{\Lambda}_{i} \mathbf{F}_{t-i}+\mathbf{e}_{t}, \quad t=1, \ldots, T
$$

where $\boldsymbol{\Lambda}_{i}$'s are $N \times k$ non-random matrices with full rank. For $t=1, \ldots, T, \mathbf{F}_{t}$'s are k-dimensional vectors of independent identically distributed (i.i.d.) standard complex components and \mathbf{e}_{t} 's are N-dimensional vectors of i.i.d. complex components with mean zero and finite second moment σ^{2}, independent of \mathbf{F}_{t}. This can also be considered as a type of information-plusnoise model (Dozier and Silverstein, 2007a,b; Bai and Silverstein, 2012) where the information comes from the summation part and the noise is \mathbf{e}_{t} 's. Here both k and q are fixed but unknown, while both N and T tend to ∞ proportionally.

Under this high dimensional setting, an important statistical problem is the estimation of k and q (Bai and $\mathrm{Ng}, 2002$; Harding, submitted for publication). To this objective, the following two variables are defined for fixed non-negative integer

[^0]τ, namely:
$$
\boldsymbol{\Phi}_{N}(\tau)=\frac{1}{2 T} \sum_{j=1}^{T}\left(\mathbf{R}_{j} \mathbf{R}_{j+\tau}^{*}+\mathbf{R}_{j+\tau} \mathbf{R}_{j}^{*}\right)
$$
and
$$
\mathbf{M}_{N}(\tau)=\sum_{j=1}^{T}\left(\gamma_{j} \gamma_{j+\tau}^{*}+\gamma_{j+\tau} \gamma_{j}^{*}\right)
$$
where $\gamma_{j}=\frac{1}{\sqrt{2 T}} \mathbf{e}_{j}$ and $*$ denotes the conjugate transpose.
Suppose \mathbf{A}_{n} is an $n \times n$ random Hermitian matrix with eigenvalues $\lambda_{j}, j=1,2, \ldots, n$. Define a one-dimensional distribution function
$$
F^{\mathbf{A}_{n}}(x)=\frac{1}{n} \sharp\left\{j \leq n: \lambda_{j} \leq x\right\}
$$
called the empirical spectral distribution (ESD) of matrix A. Here $\sharp E$ denotes the cardinality of the set E. The limit distribution of $\left\{F^{\boldsymbol{A}_{n}}\right\}$ for a given sequence of random matrices $\left\{\mathbf{A}_{n}\right\}$ is called the limiting spectral distribution (LSD).

Note that when $\tau=0$, we have $\mathbf{M}_{N}(\tau)=\frac{1}{T} \sum_{j=1}^{T} \mathbf{e}_{j} \mathbf{e}_{j}^{*}$, which is a sample covariance matrix, whose LSD follows MP law (Marčenko and Pastur, 1967) with density

$$
f_{c}(x)=\frac{1}{2 \pi c x} \sqrt{\left(b_{c}-x\right)\left(x-a_{c}\right)}, \quad x \in\left[a_{c}, b_{c}\right]
$$

and a point mass $1-1 / c$ at the origin if $c>1$. Here $c=\lim _{N \rightarrow \infty} N / T, a_{c}=(1-\sqrt{c})^{2}$ and $b_{c}=(1+\sqrt{c})^{2}$.
Moreover, if we write

$$
\boldsymbol{\Lambda}=\left(\boldsymbol{\Lambda}_{0}, \boldsymbol{\Lambda}_{1}, \ldots, \boldsymbol{\Lambda}_{q}\right)_{N \times k(q+1)}
$$

then the covariance matrix of \mathbf{R}_{t} will be similar to

$$
\left(\begin{array}{cc}
\sigma^{2} \mathbf{I}+\mathbf{\Lambda}^{*} \boldsymbol{\Lambda} & \mathbf{0} \\
\mathbf{0} & \sigma^{2} \mathbf{I}
\end{array}\right)
$$

with the size of the upper block and lower block $k(q+1)$ and $N-k(q+1)$, respectively. Thus, we have a spiked population model (Johnstone, 2001; Baik and Silverstein, 2006; Bai and Yao, 2008). In fact, under certain conditions, the quantity $k(q+1)$ can be estimated by counting the number of eigenvalues of $\boldsymbol{\Phi}_{N}(0)$ that are larger than $\sigma^{2} b_{c}$. Therefore, it remains to estimate the numbers k and q separately. To this end, it is necessary to investigate the LSD of $\mathbf{M}_{N}(\tau)$ for at least one $\tau \geq 1$. As such, Jin et al. (2014) have established the following result.

Theorem 1.1 (Theorem 1.1 in Jin et al., 2014). Assume:
(a) $\tau \geq 1$ is a fixed integer.
(b) $\mathbf{e}_{k}=\left(\varepsilon_{1 k}, \ldots, \varepsilon_{N k}\right)^{\prime}, k=1,2, \ldots, T+\tau$, are N-dimensional vectors of independent standard complex components with $\sup _{1 \leq i \leq N, 1 \leq t \leq T+\tau} \mathrm{E}\left|\varepsilon_{i t}\right|^{2+\delta} \leq M<\infty$ for some $\delta \in(0,2]$, and for any $\eta>0$,

$$
\begin{equation*}
\frac{1}{\eta^{2+\delta} N T} \sum_{i=1}^{N} \sum_{t=1}^{T+\tau} \mathrm{E}\left(\left|\varepsilon_{i t}\right|^{2+\delta} I\left(\left|\varepsilon_{i t}\right| \geq \eta T^{1 /(2+\delta)}\right)\right)=o(1) \tag{1.1}
\end{equation*}
$$

(c) $N /(T+\tau) \rightarrow c>0$ as $N, T \rightarrow \infty$.
(d) $\mathbf{M}_{N}=\sum_{k=1}^{T}\left(\gamma_{k} \gamma_{k+\tau}^{*}+\gamma_{k+\tau} \gamma_{k}^{*}\right)$, where $\gamma_{k}=\frac{1}{\sqrt{2 T}} \mathbf{e}_{k}$.

$$
\phi_{c}(x)=\frac{1}{2 c \pi} \sqrt{\frac{y_{0}^{2}}{1+y_{0}}-\left(\frac{1-c}{|x|}+\frac{1}{\sqrt{1+y_{0}}}\right)^{2}}, \quad|x| \leq a,
$$

where

$$
a= \begin{cases}\frac{(1-c) \sqrt{1+y_{1}}}{y_{1}-1}, & c \neq 1 \\ 2, & c=1\end{cases}
$$

y_{0} is the largest real root of the equation: $y^{3}-\frac{(1-c)^{2}-x^{2}}{x^{2}} y^{2}-\frac{4}{x^{2}} y-\frac{4}{x^{2}}=0$ and y_{1} is the only real root of the equation:

$$
\begin{equation*}
\left((1-c)^{2}-1\right) y^{3}+y^{2}+y-1=0 \tag{1.2}
\end{equation*}
$$

such that $y_{1}>1$ if $c<1$ and $y_{1} \in(0,1)$ if $c>1$. Further, if $c>1$, then F_{c} has a point mass $1-1 / c$ at the origin.

https://daneshyari.com/en/article/1151597

Download Persian Version:
https://daneshyari.com/article/1151597

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: baizd@nenu.edu.cn (Z.D. Bai), wangchen2351@gmail.com (C. Wang).

