Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A note on the limiting spectral distribution of a symmetrized auto-cross covariance matrix

^a KLASMOE and School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, People's Republic of China ^b Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore

ARTICLE INFO

Article history: Received 18 June 2014 Received in revised form 21 August 2014 Accepted 3 October 2014 Available online 26 October 2014

MSC: primary 60F15 15B52 62H25 secondary 60F05 60F17

Keywords: Auto-cross covariance Limiting spectral distribution Random matrix theory Stieltjes transform

1. Introduction

Consider a large dimensional dynamic k-factor model with lag q taking the form of

$$\mathbf{R}_t = \sum_{i=0}^q \mathbf{\Lambda}_i \mathbf{F}_{t-i} + \mathbf{e}_t, \quad t = 1, \dots, T$$

where \mathbf{A}_i 's are $N \times k$ non-random matrices with full rank. For t = 1, ..., T, \mathbf{F}_t 's are k-dimensional vectors of independent identically distributed (i.i.d.) standard complex components and \mathbf{e}_t 's are N-dimensional vectors of i.i.d. complex components with mean zero and finite second moment σ^2 , independent of \mathbf{F}_t . This can also be considered as a type of *information-plus-noise model* (Dozier and Silverstein, 2007a,b; Bai and Silverstein, 2012) where the information comes from the summation part and the noise is \mathbf{e}_t 's. Here both k and q are fixed but unknown, while both N and T tend to ∞ proportionally.

Under this high dimensional setting, an important statistical problem is the estimation of k and q (Bai and Ng, 2002; Harding, submitted for publication). To this objective, the following two variables are defined for fixed non-negative integer

* Corresponding author. E-mail addresses: baizd@nenu.edu.cn (Z.D. Bai), wangchen2351@gmail.com (C. Wang).

http://dx.doi.org/10.1016/j.spl.2014.10.002 0167-7152/© 2014 Elsevier B.V. All rights reserved.

ABSTRACT

In Jin et al. (2014), the limiting spectral distribution (LSD) of a symmetrized auto-cross covariance matrix is derived using matrix manipulation. The goal of this note is to provide a new method to derive the LSD, which greatly simplifies the derivation in Jin et al. (2014). Moreover, as a by-product, the moment condition of the underlying random variables can be weakened from $2 + \delta$ to 2.

© 2014 Elsevier B.V. All rights reserved.

 τ , namely:

$$\Phi_N(\tau) = \frac{1}{2T} \sum_{j=1}^T (\mathbf{R}_j \mathbf{R}_{j+\tau}^* + \mathbf{R}_{j+\tau} \mathbf{R}_j^*)$$

and

$$\mathbf{M}_{N}(\tau) = \sum_{j=1}^{T} (\gamma_{j} \gamma_{j+\tau}^{*} + \gamma_{j+\tau} \gamma_{j}^{*})$$

where $\gamma_j = \frac{1}{\sqrt{2T}} \mathbf{e}_j$ and * denotes the conjugate transpose. Suppose \mathbf{A}_n is an $n \times n$ random Hermitian matrix with eigenvalues λ_j , j = 1, 2, ..., n. Define a one-dimensional distribution function

$$F^{\mathbf{A}_n}(x) = \frac{1}{n} \sharp \{ j \le n : \lambda_j \le x \}$$

called the empirical spectral distribution (ESD) of matrix A. Here $\sharp E$ denotes the cardinality of the set E. The limit distribution of $\{F^{\mathbf{A}_n}\}$ for a given sequence of random matrices $\{\mathbf{A}_n\}$ is called the limiting spectral distribution (LSD).

Note that when $\tau = 0$, we have $\mathbf{M}_N(\tau) = \frac{1}{T} \sum_{j=1}^{T} \mathbf{e}_j \mathbf{e}_j^*$, which is a sample covariance matrix, whose LSD follows MP law (Marčenko and Pastur, 1967) with density

$$f_c(x) = \frac{1}{2\pi cx} \sqrt{(b_c - x)(x - a_c)}, \quad x \in [a_c, b_c]$$

and a point mass 1 - 1/c at the origin if c > 1. Here $c = \lim_{N \to \infty} N/T$, $a_c = (1 - \sqrt{c})^2$ and $b_c = (1 + \sqrt{c})^2$. Moreover, if we write

$$\mathbf{\Lambda} = (\mathbf{\Lambda}_0, \mathbf{\Lambda}_1, \dots, \mathbf{\Lambda}_q)_{N \times k(q+1)}$$

then the covariance matrix of \mathbf{R}_t will be similar to

$$\begin{pmatrix} \sigma^2 \mathbf{I} + \mathbf{\Lambda}^* \mathbf{\Lambda} & \mathbf{0} \\ \mathbf{0} & \sigma^2 \mathbf{I} \end{pmatrix},$$

with the size of the upper block and lower block k(q + 1) and N - k(q + 1), respectively. Thus, we have a spiked population model (Johnstone, 2001; Baik and Silverstein, 2006; Bai and Yao, 2008). In fact, under certain conditions, the quantity k(q+1)can be estimated by counting the number of eigenvalues of $\Phi_N(0)$ that are larger than $\sigma^2 b_c$. Therefore, it remains to estimate the numbers k and q separately. To this end, it is necessary to investigate the LSD of $\mathbf{M}_N(\tau)$ for at least one $\tau \geq 1$. As such, Jin et al. (2014) have established the following result.

Theorem 1.1 (Theorem 1.1 in Jin et al., 2014). Assume:

(a)
$$\tau \geq 1$$
 is a fixed integer.

(b) $\mathbf{e}_k = (\varepsilon_{1k}, \dots, \varepsilon_{Nk})', k = 1, 2, \dots, T + \tau$, are *N*-dimensional vectors of independent standard complex components with $\sup_{1 \le i \le N, 1 \le t \le T + \tau} \mathbb{E}|\varepsilon_{it}|^{2+\delta} \le M < \infty$ for some $\delta \in (0, 2]$, and for any $\eta > 0$,

$$\frac{1}{\eta^{2+\delta}NT} \sum_{i=1}^{N} \sum_{t=1}^{T+\tau} \mathbb{E}(|\varepsilon_{it}|^{2+\delta} I(|\varepsilon_{it}| \ge \eta T^{1/(2+\delta)})) = o(1).$$
(1.1)

(1.2)

(c) $N/(T + \tau) \rightarrow c > 0$ as $N, T \rightarrow \infty$. (d) $\mathbf{M}_N = \sum_{k=1}^{T} (\gamma_k \gamma_{k+\tau}^* + \gamma_{k+\tau} \gamma_k^*)$, where $\gamma_k = \frac{1}{\sqrt{2T}} \mathbf{e}_k$.

Then as N, $T \to \infty$, $F^{\mathbf{M}_N} \xrightarrow{d} F_c$ a.s. and F_c has a density function given by

$$\phi_c(x) = \frac{1}{2c\pi} \sqrt{\frac{y_0^2}{1+y_0} - \left(\frac{1-c}{|x|} + \frac{1}{\sqrt{1+y_0}}\right)^2}, \quad |x| \le a,$$

where

$$a = \begin{cases} \frac{(1-c)\sqrt{1+y_1}}{y_1-1}, & c \neq 1, \\ 2, & c = 1, \end{cases}$$

 y_0 is the largest real root of the equation: $y^3 - \frac{(1-c)^2 - x^2}{x^2}y^2 - \frac{4}{x^2}y - \frac{4}{x^2} = 0$ and y_1 is the only real root of the equation:

$$((1-c)^2 - 1)y^3 + y^2 + y - 1 = 0$$

such that $y_1 > 1$ if c < 1 and $y_1 \in (0, 1)$ if c > 1. Further, if c > 1, then F_c has a point mass 1 - 1/c at the origin.

Download English Version:

https://daneshyari.com/en/article/1151597

Download Persian Version:

https://daneshyari.com/article/1151597

Daneshyari.com