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a b s t r a c t

We consider non-linear wavelet-based estimators of density functions with stationary
random fields, which are indexed by the integer lattice points in the N-dimensional
Euclidean space and are assumed to satisfy some mixing conditions. We investigate their
asymptotic rates of convergence based on thresholding of empirical wavelet coefficients
and show that these estimators achieve nearly optimal convergence rates within a
logarithmic term over a large range of Besov function classes Bs

p,q. Therefore, wavelet
estimators still achieve nearly optimal convergence rates for random fields and provide
explicitly the extraordinary local adaptability.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let X1, X2, . . . , Xn be a random sample from a density f on the real line, an interesting problem is to estimate f based on
the observed data {Xi}’s. There is a vast literature on density estimation based on independent or weakly dependent random
samples. Recently, inference on spatial version of the above data (i.e., spatial data or random fields) receives more and
more attention because of its importance for applications. Spatial data arise in many different fields, such as econometrics,
epidemiology, astronomy, geophysics, medicine, environmental science, image analysis and oceanography. For a systematic
discussion on random fields, see, e.g., Cressie (1991), Anselin and Florax (1995), Guyon (1995), Stein (1999), Banerjee et al.
(2004) and among others. Density and regression estimation using kernelmethod for random fieldswas investigated by Tran
(1990), Tran and Yakowitz (1993), Carbon et al. (1996), Bradley and Tran (1999), Hallin et al. (2001, 2004), Biau (2003) and
Biau and Cadre (2004), among others. To the best of our knowledge, the problem of the adaptive nonparametric estimation
of the spatial density using the wavelet approach has not been addressed so far. It is the intention of this paper to study
density estimation for random variables which show spatial interaction.

Unlike the kernel method, which typically assumes that the underlying curve satisfies certain fixed and known
smoothness condition such as two-times continuous differentiability, wavelet-based method assumes that the underlying
targeted curve belongs to a large function space which has varying degrees of smoothness. Although the wavelet estimators
do not depend on those unknown smoothness parameters, they typically attain so-called optimal convergence rates over
that large function space. This optimality demonstrates that the wavelet estimators behave as if one knows the underlying
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curve in advance. This extraordinary adaptivity property is very useful when one is not sure about the smoothness of the
underlying curve. In this paper, we consider the data are observed at regularly spaced lattice points from strictly stationary
random fields, their density functions f belong to a large range of Besov function classes Bs

p,q, s > 0, 1 ≤ p, q ≤ ∞. We
assume that the data possess certain mixing dependence structure, whose formal definition will be presented in the next
section. As those in the wavelet literature, we investigate the asymptotic convergence rates of nonlinear wavelet-based
estimators. The main contribution of this paper is to show that these estimators with strong mixing spatial data attain
nearly optimal convergence rates over the large function classes Bs

p,q, which extends existing results with independent or
weakly dependent errors to random fields.

The rest of this paper is organized as follows. In the next section, we recall briefly the elements of random fields, wavelets,
density function spaces Bs

p,q, and introduce the wavelet-based estimators for the spatial density functions. The main result
is described in Section 3, whose proof is provided in Section 4 and Appendix.

2. Preliminaries

This section provides some basic facts about random fields, wavelets, the function spaces Bs
p,q for density functions, and

the proposed wavelet-based estimators that will be used in the sequel.

2.1. Random fields

We consider that the data are observed at regularly spaced lattice points from a strictly stationary random field. To be
specific, letZN denote the integer lattice points in theN-dimensional Euclidean space and {Xi} be a strictly stationary random
field indexed by ZN and defined on some probability space (Ω,F , P). A point i in ZN will be referred to as a site and written
as i = (i1, i2, . . . , iN). In this paper, we adopt the same dependence structure (mixing conditions) on the random field
as in Tran (1990) and Hallin et al. (2004). Let S and S′ be two collections of sites. The Borel fields B(S) = B(Xi, i ∈ S)
and B(S′) = B(Xi, i ∈ S′) are the σ -fields generated by the random variables Xi with sites i and i′ ranging over S
and S′, respectively. Let d(S, S′) := min{∥i − i′∥ |i ∈ S, i′ ∈ S′

} be the Euclidean distance between S and S′, where
∥i∥ := (i21 + i22 +· · ·+ i2N)

1/2 stands for the Euclidean norm.Wewill assume that Xi satisfies the followingmixing condition:
There exists a function ϕ(t) ↓ 0 as t → ∞, such that whenever S, S′

⊂ ZN ,

α

B(S), B(S′)


= sup

P(AB)− P(A)P(B)
, A ∈ B(S), B ∈ B(S′)


≤ h


Card(S), Card(S′)


ϕ

d(S, S′)


, (2.1)

where Card(S) denotes the cardinality of S. Here h is a symmetric positive function nondecreasing in each variable.
Throughout the paper, assume that h satisfies either

h(n′, n′′) ≤ min{n′, n′′
} or (2.2)

h(n′, n′′) ≤ C0 (n′
+ n′′

+ 1)C1 , (2.3)

for some constants C0 > 0 and C1 > 1. If h ≡ 1, then Xi is called strongly mixing.
The function ϕ in above mixing assumption (2.1) satisfies the following assumption:

A1: There exist constant 0 < ρ < 1 and some C2 > 0 such that ϕ(k) ≤ C2ρ
k for all k ≥ 1.

The exponential decaying rate for the mixing coefficient is relatively strong, but it is used in many places when one
deals with exponential inequality for spatial processes. Withers (1981) has shown that autoregressive and more general
nonlinear time series models are strongly mixing with exponential mixing rates under certain weak assumptions. Let In be
a rectangular region defined by In = {i ∈ ZN , 1 ≤ il ≤ nN , l = 1, 2, . . . ,N} and n = (n1, n2, . . . , nN). Assume that we
observe {Xi} on In. Suppose {Xi} takes values in R and has density f (x). The joint probability density for Xi1 and Xi2 is denoted
with fXi1 ,Xi2 (x, y) satisfies the following assumption:

A2: |fXi1 ,Xi2 (x, y)− f (x)f (y)| ≤ C for some constant C and for all x, y, i1 and i2.
We write n → ∞ if min{n1, n2, . . . , nN} → ∞ and C3 < |ni/nj| < C4, i, j = 1, 2, . . . ,N for some constants

0 < C3, C4 < ∞. Letter C will be used to denote constants whose values are unimportant and may vary from line to
line. All limits are taken as n → ∞. Also let nπ = n1 · n2 · · · nN .

2.2. Wavelets and function spaces

Our estimators are constructed in terms of wavelets, which form an orthonormal basis of L2(R). Formally, let φ(x) and
ψ(x) be father and mother wavelets, having the following properties: φ and ψ are bounded and compactly supported, and
φ = 1. We call a wavelet ψ r-regular if ψ has r vanishing moments and r continuous derivatives. For the existence of

these compactly supported wavelets with high order varnish moments and continuous derivative, see Daubechies (1992).
The translations and dilations of above wavelets are defined as

φj0k(x) = 2j0/2φ(2j0x − k), ψjk(x) = 2j/2ψ(2jx − k), x ∈ R, j0, j, k ∈ Z.
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