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a b s t r a c t

The problem of singularity of the Poisson–gamma model is considered. As an addition to
the known results, we present the property of the log-likelihood function which implies
the singularity of this model. An example of the singularity issue is presented.
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1. Introduction

Let us consider the problem of singularity in the Poisson–gammamodel of count data applying the maximum likelihood
method to obtain empirical Bayes estimates of unknown parameters. Reference to empirical Bayesmethods for data analysis
could be found in, e.g., Carlin and Louis (1996). A comprehensive list of methods for count data is presented, e.g., in Cameron
and Trivedi (1998), Cameron and Trivedi (2005), Cameron and Trivedi (2009) and Hilbe (2011). General linear models are
considered, e.g., in McCullagh and Nelder (1983).

The singularity, in this context, means that, in the process of estimating parameters of the selectedmodel, variance of the
mixing distribution (in this case, the gamma distribution) converges to zero. Sometimes this problem arises in probability
estimation of rare events in large populations if event count estimates, based on the relative risk estimates, are too close
to the observed event count values. In such a case the maximum likelihood estimates of unknown probabilities give zero
variance of the mixing component. In practice, iterative optimization procedures, used for finding maximum likelihood
estimates, converge to infinity values of distribution parameters, so we need to stop the procedures at some large values
of the parameters and set the maximum likelihood estimates of unknown probabilities all equal to the mean relative risk
estimate.

The solution of this problem (the existence of maximum of the likelihood function, considering symmetrical compound
multinomial distribution, negative binomial distribution, and the Poisson mixture) is given in Levin and Reeds (1977).

It is worthmentioning, that the condition of non-singularity (i.e. condition of the existence of maximum of the likelihood
function for finite parameter values) is not well known, at least in practical use. Mostly, rather a theoretical setting of
the problem is used, so it is hard to find a connection with a practical setting of the problem. Recently, the existence of
maximum likelihood estimators in Poisson–gamma hierarchical generalized linear models (HGLM) and negative binomial
regression models has been studied in Gning and Pierre-Loti-Viaud (2013). An issue of singularity of the Poisson–Gaussian
model was considered in detail in Sakalauskas (2010a,b), that implemented a non-singularity condition (which appears to
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be the same as for the Poisson–gammamodel) to the observed event counts, given the population sizes. In this note, we use
the practical setting of the problem and present a property of the log-likelihood function that gives a clear explanation why
the singularity of estimating parameters of the empirical Bayes Poisson–gammamodel occurs. An example of the singularity
issue is presented as well.

2. Main results

Let us have K populations consisting of Nj, j = 1, . . . , K , individuals, and some event (e.g., some disease) can occur in
these populations. We observe the number of events Yj, j = 1, . . . , K . We assume that for j = 1, . . . , K , each number
of events Yj is caused by an unknown probability λj, and these probabilities are equal for each individual from the same
population. Moreover, assume that all the events in all the populations are independent. Under the selected mathematical
model, Yj, j = 1, . . . , K , are a sample of independent random variables Yj, j = 1, . . . , K , with a binomial distribution,
respectively, with the number of experiments Nj, j = 1, . . . , K , and success probabilities λj, j = 1, . . . , K . Clearly,
E(Yj) = λjNj, j = 1, . . . , K . Note that the corresponding variance is E(Yj − E(Yj))

2
= λj(1 − λj)Nj, j = 1, . . . , K .

Considering small probabilities λj, j = 1, . . . , K , an assumption is often made (see, e.g., Clayton and Kaldor, 1987;
Tsutakava et al., 1985) that random variables Yj, j = 1, . . . , K , have a Poisson distribution with the parameters λjNj, j =

1, . . . , K , respectively, i.e.,

P{Yj = m} = h(m, λjNj), m = 0, 1, . . . , j = 1, . . . , K ,

where

h(m, z) = e−z z
m

m!
, m = 0, 1, . . . , z > 0.

Again, E(Yj) = λjNj, j = 1, . . . , K . Additionally, following the property of the Poisson distribution, E(Yj − E(Yj))
2

=

E(Yj) = λjNj, j = 1, . . . , K . It is important to note that this model (Poisson model) should be used only for small
probabilities, because, for this approximation, there is a non-zero probability for event count to exceed the population size.
It is possible to use the Poisson model only if P{Yj > Nj} ≈ 0, j = 1, . . . , K , so that these small probabilities might be
ignored.

The Poissonmodel distinguishes by the so-called equidispersion (equality ofmean and variance) property, which follows
from the property that the sum of the independent Poisson random variables has a Poisson distribution with the parameter
equal to the sumof parameters of the components. The Poissonmodel is very simple (in fact, the benchmarkmodel for count
data is the Poisson distribution), but, in practice, very rarely real-world data have such a property. The Poisson model is a
variant of the standard negative binomial model, termed NB2 (see Hilbe, 2011). The latter model may be regarded as more
general and more representative of the majority of count models. It is worth mentioning, that the initial binomial model
does not have an exact equidispersion property, so this model must be considered in a different way (this model is not in
the scope of this article).

Mostly, due to the unobserved heterogeneity, variance of the real-world data exceeds the mean (overdispersion). Only
in some special cases we observe the opposite feature, i.e., underdispersion. The latter cases require special mathematical
models that will not be discussed here. In the case of overdispersed data, there is a simple method to add the additional
variance to the model. We can assume that unknown probabilities are independent random variables with non-zero
variance (as a mixing distribution). Variance of the compound distribution will be greater, and it may be adjusted by
selecting the appropriate distribution parameters. Perhaps the most popular choice for the mixing distribution is a gamma
distribution.

Empirical Bayesmethods (Carlin and Louis, 1996) arewidely used to represent the precision of the small-area parameters
through their estimated posterior distributions, replacing the unknown variance component and other parameters by their
maximum likelihood estimates. In the empirical Bayesian estimation the probabilities of events in populations are assumed
random and have some certain distribution. It is well known (see, e.g., Clayton and Kaldor, 1987) that Bayesian estimates of
unknown probabilities have a substantially smaller mean square error as compared with the mean square error of simple
relative risk estimates.

We assume that unknown probabilities λj, j = 1, . . . , K , are independent identically distributed gamma random vari-
ables with the shape parameter ν > 0 and the scale parameter α > 0, i.e., the distribution function F has the distribution
density

f (x) = f (x; ν, α) =
ανxν−1

0(ν)
e−αx, 0 ≤ x < ∞.

Then E(λj) = ν/α, and E(λj − E(λj))
2

= ν/α2, j = 1, . . . , K . Given the observed number of events Yj, j = 1, . . . , K , and
population sizes Nj, j = 1, . . . , K , Bayes estimates for λj, j = 1, . . . , K , are (see, e.g., Clayton and Kaldor, 1987)

E(λj | Yj = Yj) =
Yj + ν

Nj + α
, j = 1, . . . , K . (1)
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