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a b s t r a c t

This paper introduces a simplex-based extension of the concept of runs to the bivariate
setup which allows to test for randomness under the null hypothesis of angularly
symmetric distributions. The statistic’s null limiting distribution is derived andMonte Carlo
studies evaluate the test performances.
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1. Introduction

The notion of randomness is central in serial contexts. Indeed, detecting the presence or absence of structure in
chronological observations is crucial and often the first step in the analysis of such data. Runs tests for randomness have
been around for decades. These nonparametric procedures can either be based on the length of the longest run or – as in
Wald and Wolfowitz (1940) – on the number of runs. The classical univariate description of the latter is the following.

For some fixed θ ∈ R, the hypothesisH
(n)
θ under testing states that the observationsX1, . . . , Xn aremutually independent

random variables satisfying P(Xt < θ) = P(Xt ≤ θ) = 1/2. Denoting IA the indicator function of the set A, the number of
runs in the sequence X1, . . . , Xn is defined as

R(n)θ = 1 +

n
t=2

I[Ut,θ ≠Ut−1,θ ], (1)

where Ut,θ = I[Xt<θ ] − I[Xt>θ ]. That is, R
(n)
θ counts the number of runs (i.e. blocks) of consecutive 1’s or −1’s in the sequence

of signs of the residual Xt − θ .
Denoting Eθ the expectation under H

(n)
θ , classical Wald–Wolfowitz-type tests then reject the null hypothesis of random-

nesswhen |R(n)θ −Eθ (R
(n)
θ )| is too large. This is sensible since large (resp. small) values of R(n)θ indicate negative (resp. positive)

serial dependence. Exact tests are derived easily since, under H
(n)
θ , R(n)θ ∼ 1 + Bin ((n − 1), 1/2). Moreover, rewriting (1)

using I[Ut,θ ≠Ut−1,θ ] = (1 − Ut,θUt−1,θ )/2, it is seen that the quantity

r (n)θ =

−2

R(n)θ − Eθ (R

(n)
θ )


√
n − 1

:=
1

√
n − 1

n
t=2

Ut,θUt−1,θ (2)
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is asymptotically standard normal. The asymptotic runs test therefore rejects H
(n)
θ at asymptotic level α as soon as (r (n)θ )2 >

χ2
1,1−α , where χ2

k,1−α denotes the upper α quantile of the χ2
k distribution.

Both tests require the common median to be specified, though. If the median θ is unknown, only the latter test can be
implemented, then rejecting the null of randomness for large value of (r (n)

θ̂
)2, where θ̂ is an appropriate estimator of θ .

Many subsequent generalizations of (2) are available in the literature. For example, improving on the fact that
Wald–Wolfowitz-type tests cannot detect serial dependence at a lag greater than one, Dufour et al. (1998) introduced
generalized runs tests, rejecting the null of randomness H

(n)
θ at asymptotic level α as soon as, for H a fixed positive integer,

C (n)H,θ :=

H
h=1


r (n)h,θ

2
:=

H
h=1


1

√
n − h

n
t=h+1

Ut,θUt−h,θ

2

> χ2
H,1−α.

In parallel, a natural interest for the definition of multivariate runs tests grew as multivariate time series became a part of
the daily practice. Considering X1, . . . ,Xn, a series of d-variate observations, Paindaveine (2009) provides two extensions
of (2) involving the standardized spatial signs

Ut,θ(V) =
V−1/2 (Xt − θ)

∥V−1/2 (Xt − θ) ∥
, (3)

where V is an appropriate shape matrix (see, for example, Taskinen et al., 2005). Both the elliptical Marden runs

r (n)eθ (V) =

n
t=2

Ut,θ(V)′Ut−1,θ(V) (4)

and the (matrix-valued) full-rank runs (that are also of an elliptical nature; we adopt here the denominations from
Paindaveine, 2009)

r (n)fθ (V) =

n
t=2

Ut,θ(V)Ut−1,θ(V)′ (5)

– the former itself generalizing the Marden (1999) spherical runs (obtained by imposing V = Id, the d × d identity matrix)
– provide affine-invariant statistics to test for multivariate randomness.

The null hypothesis considered in these multivariate extensions is that of elliptical directions (see Randles, 1989, 2000).
Although this is indeed a multivariate version of H

(n)
θ , this still puts restrictions on the signs Ut,θ(V) as, for example, their

support need to be the whole hypersphere Sd−1. Moreover, even in the θ-specified case, such tests typically require the
estimation of the shape parameter V.

In this paper, we introduce an affine-invariant bivariate runs test that (i) is valid – in the sense that it meets the level
constraint – for any angularly symmetric distribution of the random vectors Xt and (ii) does not require the estimation of
any extra parameter. This is achieved by generalizing (1) based on the following remark: In R(n)θ , a new run is added when
residuals (Xt −θ) and (Xt−1 −θ) have different signs, that is, when the origin is contained in the interval (or, equivalently in
the univariate case, simplex) with endpoints Ut,θ and Ut−1,θ . In the bivariate setup, denoting from now on Ut,θ := Ut,θ(I2),
this suggests defining a runs statistic as the number of simplices with verticesUt,θ,Ut−1,θ andUt−2,θ that contain the origin.
As we show below, the resulting statistic allows to test for bivariate, angularly symmetric, randomness and enjoys many
properties of its univariate counterpart. For a related approach, see Dyckerhoff et al. (2015).

The rest of the paper is organized as follows. Section 2 describes the proposed test statistic. The null hypothesis of
randomness is defined in Section 2.1. The simplicial bivariate runs (and the resulting test) are then defined in Section 2.2,
while their invariance properties are discussed in Section 2.3. In Section 3, the null asymptotic distribution of the proposed
test is derived. Section 4 is dedicated toMonte Carlo experiments. Final comments aremade in Section 5,while the Appendix
collects the proofs.

2. Bivariate tests

This section describes the null hypothesis used in this paper and the extension of the univariate classical runs test statistic
to the bivariate setup.

2.1. The null hypothesis

Let X1, . . . ,Xn ∈ R2 be a sequence of bivariate random vectors. The null hypothesis we consider in this paper is a
multivariate extension of H

(n)
θ described in the introduction. More precisely, for any 2-variate θ ∈ R2, we denote by H

(n)
θ,ang

the hypothesis under which (i) P(Xt = θ) = 0, for all t = 1, . . . , n, and (ii) the vectors Ut,θ are independent and identically
distributed with a common continuous and centrally symmetric distribution on the unit circle S1.
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