
Statistics and Probability Letters 112 (2016) 72–78

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

On randomization-based and regression-based inferences for
2K factorial designs
Jiannan Lu
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

a r t i c l e i n f o

Article history:
Received 11 December 2015
Received in revised form 5 January 2016
Accepted 15 January 2016
Available online 8 February 2016

Keywords:
Causal inference
Potential outcome
Unbalanced design
Huber–White estimator

a b s t r a c t

We extend the randomization-based causal inference framework in Dasgupta et al. (2015)
for general 2K factorial designs, and demonstrate the equivalence between regression-
based and randomization-based inferences. Consequently, we justify the use of regression-
based methods in 2K factorial designs from a finite-population perspective.

© 2016 Published by Elsevier B.V.

1. Introduction

Factorial designs, originally introduced for agricultural experiments (Fisher, 1935; Yates, 1937), have gained more
popularity in recent times because of their abilities to investigate multiple treatment factors simultaneously. As pointed out
by Ding (2014), although rooted in randomization theory (e.g., Kempthrone, 1952), factorial designs have been dominantly
analyzed by regression methods in practice. Unfortunately, however, regression-based inference might not be suitable
under certain circumstances. For example, several researchers (e.g., Miller, 2006; Lu et al., 2015) have pointed out that in
many randomized experiments we cannot treat the experimental units as a random sample drawn from a hypothetical
super-population, and should instead restrict the scope of inference to the finite-population of the experimental units
themselves. Realizing the inherent deficiencies of regression-based inference, Dasgupta et al. (2015) advocated conducting
randomization-based inference for factorial designs by utilizing the concept of potential outcomes (Neyman, 1990; Rubin,
1974). The proposed framework for balanced 2K factorial designs is flexible, interpretable and applicable to both finite-
population and super-population settings.

Given the advantages of randomization-based inference, it is necessary to generalize the framework in Dasgupta et al.
(2015) formore general, i.e., unbalanced, 2K factorial designs.Moreover, it is of great importance to reconcile randomization-
based and regression-based inferences, i.e., the point estimators of the factorial effects and their corresponding confidence
regions. However, although the equivalence between randomization-based and regression-based inferences for randomized
treatment-control studies (i.e., 21 factorial designs) has been well established in the existing literature (Schochet, 2010;
Samii and Aronow, 2012; Lin, 2013), similar discussions for 2K factorial designs appear to be absent. In this paper, we fulfill
the aforementioned two-fold task.

The paper proceeds as follows. Section 2 extends the randomization-based inference framework in Dasgupta et al. (2015)
to general 2K factorial designs. Section 3 demonstrates the equivalence between randomization-based and regression-based
inferences for 2K factorial designs. Section 4 considers extensions, and Section 5 concludes and discusses possible future
directions.
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2. Randomization-based inference for general 2K factorial designs

2.1. 2K factorial designs

Consider K distinct factors, each with two levels -1 and 1. We construct the model matrix (Wu and Hamada, 2009)
H = (h0, . . . , h2K−1) as follows (Espinosa et al., 2015):

• let h0 = 12K ;

• for k = 1, . . . , K , construct hk by letting its first 2K−k entries be −1, the next 2K−k entries be 1, and repeating 2k−1 times;
• for k = K + 1, . . . , K +


K
2


, let hk = hk1 · hk2 , where k1, k2 ∈ {1, . . . , K};

. . .
• let hJ−1 = h1 · · · · · hK .

For j = 1, . . . , 2K , let h̃j denote the jth rowof themodelmatrixH . Awell-known fact is that themodelmatrixH is orthogonal,
i.e.,

HH ′
= (h̃jh̃′

j′)2k×2K = 2K I2K , H ′H =

2K
j=1

h̃′

jh̃j = 2K I2K . (1)

The jth row of H̃ = (h1, . . . , hK ) is the jth treatment combination zj, and the columns of H define the factorial effects. To
be specific, the first column h0 corresponds to the null effect, the next K columns h1, . . . , hK correspond to the main effects
of the K factors, the next


K
2


columns hK+1, . . . , hK+


K
2

 correspond to the two-way interactions, etc., and eventually the

last column hJ−1 corresponds to the K -factor interaction.

Example 1. For 22 factorial designs, the model matrix is:

H =


h0 h1 h2 h3

h̃0 1 −1 −1 1
h̃1 1 −1 1 −1
h̃2 1 1 −1 −1
h̃3 1 1 1 1

.

The four treatment combinations are z1 = (−1, −1), z2 = (−1, 1), z3 = (1, −1) and z4 = (1, 1). We represent the main
effects of factors 1 and 2 by h1 = (−1, −1, 1, 1)′ and h2 = (−1, 1, −1, 1)′ respectively, and the two-way interaction by
h3 = (1, −1, 1, −1)′.

2.2. Randomization-based inference

For consistency, we adopt the notations in Dasgupta et al. (2015). Let N ≥ 2K+1 be the number of experimental
units. Under the Stable Unit Treatment Value Assumption (Rubin, 1980), for unit i, we denote its potential outcome under
treatment combination zj as Yi(zj), for all j = 1, . . . , 2K . Let Yi = {Yi(z1), . . . , Yi(z2K )}′, and we define the factorial effect
vector of unit i as

τ i =
1

2(K−1)
H ′Yi. (2)

Having defined the potential outcomes and factorial effects on the individual-level, we shift focus to the population-level.
For all j, we let

Ȳ (zj) =
1
N

N
i=1

Yi(zj)

be the average potential outcome under treatment combination zj, across all experimental units. Let Ȳ = {Ȳ (z1), . . . ,
Ȳ (z2K )}′, and we define the population-level factorial effect vector as

τ =
1
N

N
i=1

τ i =
1

2(K−1)
H ′Ȳ . (3)

We consider general 2K factorial designs. For j = 1, . . . , 2K , we randomly assign nj ≥ 2 units to treatment zj. Note that2K
j=1 nj = N. For unit i, we let

Wi(zj) =


1, if unit i is assigned treatment zj,
0, otherwise.
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