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a b s t r a c t

In this paper we consider a generalized Ait-Sahalia interest rate model. We first extend the
space of admissible parameters that ensures the existence of a unique positive solution to
the model. Then, we provide an explicit estimate for tail probabilities of solutions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The original Ait-Sahalia interest rate model was proposed first by Ait-Sahalia (1996) and then, has been investigated by
various authors (see, e.g. Conley et al., 1997, Gallant and Tauchen, 1997, Hong and Haitao, 2005). The aim of this paper is to
provide some new contributions to a generalized Ait-Sahalia model that was recently introduced by Szpruch et al. (2011).
In this model, the dynamics of interest rates is described by the following stochastic differential equation

dxt =


a1
xt

− a2 + a3xt − a4xrt


dt + σ xρ

t dwt , (1.1)

where wt is a standard Brownian motion, the coefficients a1, . . . , a4, σ and the initial condition x0 are positive constants.
The drift and the volatility of the model (1.1) violate the Lipschitz and linear growth conditions which are traditionally

imposed in the study of stochastic differential equations. In addition, the drift has a singularity at x = 0. Those cause some
mathematical difficulties whichmake the study of the model (1.1) particularly interesting. As a mathematical model arising
in finance, there are a lot of fundamental properties of the system (1.1) that need discussing. When ρ > 1 and r > 1, the
existence, uniqueness and numerical simulation of positive solutions have been investigated by Szpruch et al. (2011). In the
present paper, we provide the following results:
(i) In Theorem 3.1, we show that the model (1.1) admits a unique positive solution even when ρ ∈ (0, 1) and r ∈ (−1, 1).

To obtain a such result, our proof strongly relies on the singularity of the drift, the Hölder continuity of Brownianmotion
and the technique of stopping times. We also notice that the technique used in Szpruch et al. (2011) is different from
ours and cannot be applied to the model (1.1) with ρ ∈ (0, 1) and r ∈ (−1, 1).
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(ii) Because the probability distribution function is one of the most natural features for any random variable, it would be
desirable to study the probability distribution of solutions to (1.1). In fact, the probability distribution of the solution to
several interest rate models can be computed explicitly. For example, the solution of Cox–Ingersoll–Ross model follows
a non-central Chi-Squared distribution (Cox et al., 1985), the probability distribution of the solution to Jacobi model
can be represented by a series of Jacobi polynomials (Delbaen and Shirakawa, 2002). However, the exact distribution
of the solution xt to (1.1) is unknown, it is still an open problem. Hence, one would like to obtain an estimate for
probability distributions (the estimates for the CIR/CEV-type models can be found in De Marco, 2011). Based on the
results established recently in Dung et al. (2015) and Nourdin and Viens (2009), we will provide an explicit estimate for
probability distributions of xt in Theorem 3.2.

The rest of the paper is organized as follows. In Section 2, we recall some fundamental concepts of Malliavin calculus which
will be a main tool to prove Theorem 3.2. The main results of the paper are stated and proved in Section 3.

2. Preliminaries

Let us recall some elements of stochastic calculus of variations (for more details see Nualart, 2006). Fix a time interval
[0, T ]. We suppose that (wt)t∈[0,T ] is defined on a complete probability space (Ω, F , F, P), where F = (Ft)t∈[0,T ] is a natural
filter generated by the Brownian motion w. For h ∈ L2[0, T ], we denote by w(h) the Wiener integral: w(h) =

 T
0 h(t)dwt .

Let S denote the dense subset of L2(Ω, F , P) consisting of smooth random variables of the form

F = f (w(h1), . . . , w(hn)), (2.1)

where n ∈ N, f ∈ C∞

b (Rn), h1, . . . , hn ∈ L2[0, T ]. If F has the form (2.1), we define its Malliavin derivative as the process
DF := {DtF , t ∈ [0, T ]} given by

DtF =

n
k=1

∂ f
∂xk

(w(h1), . . . , w(hn))hk(t).

We shall denote by D1,2 the space of Malliavin differentiable random variables, it is the closure of S with respect to the norm

∥F∥
2
1,2 := E|F |

2
+

 T

0
E|DuF |

2du.

Based on the results from Dung et al. (2015), Nourdin and Viens (2009), we have the following estimate for tail probabilities
of a Malliavin differentiable random variable.

Proposition 2.1. Let F be in D1,2 with mean zero. We define the following function in R:

ϕF (x) := E


∞

0
DtF E[DtF | Ft ] dt

 F = x


.

Assume that 0 < ϕF (F) ≤ αF + β, a.s. for some α ≥ 0 and β > 0. Then, for all z > 0, we have

P(F ≥ z) ≤ exp


−
z2

2αz + 2β


and P(F ≤ −z) ≤ exp


−

z2

2β


. (2.2)

Proof. Follows directly from Theorem 4.1 in Nourdin and Viens (2009) and Proposition 2.3 in Dung et al. (2015). �

3. The main results

We will not directly do the proof for the model (1.1), but for a coordinate transformation thereof. Put yt = x1−ρ
t , by Itô’s

formula we get

dyt = (1 − ρ)


a1

x1+ρ
t

− a2x
−ρ
t + a3x

1−ρ
t − a4x

r−ρ
t −

1
2
σ 2ρx−1+ρ

t


dt + (1 − ρ)σdwt ,

or equivalently

dyt = (1 − ρ)


a1

y
1+ρ
1−ρ

t

−
a2

y
ρ

1−ρ

t

+ a3yt −
a4

y
ρ−r
1−ρ

t

−
σ 2ρ

2yt


dt + (1 − ρ)σdwt , t ≥ 0. (3.1)

Thus this transformation allows us to shift the nonlinearity from the volatility coefficient into the drift coefficient. Then the
results can be more easily proved.
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