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a b s t r a c t

Motivated by seasonality and regime-switching features of some
insurance claim counting processes, we study the statistical anal-
ysis of a Markov-modulated Poisson process featuring seasonality.
We prove the strong consistency and the asymptotic normality of
a maximum split-time likelihood estimator of the parameters of
this model, and present an algorithm to compute it in practice. The
method is illustrated on a small simulation study and a real data
analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is often the case that the insurance claim frequency is impacted by environment variables. For
instance, flood risk is higher in a period of frequent heavy rains, and fire risk is more intense when
the weather is particularly dry. Such environment variables may be hidden to some extent to the
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practitioner: for instance, it is now accepted that the probabilities of severe floods in Australia, strong
snowstorms in North America or hurricanes on the East Coast of the United States increase during La
Niña episodes (see Neumann et al. [17], Cole and Pfaff [5], Parisi and Lund [20] and Landreneau [10]).
This is now taken seriously bymost reinsurers as well as Lloyd’s and the UKMet Office [13]. However,
observing andunderstanding the role of those variables is not easy,whichmakes it realistic to consider
these variables as unobserved so far.

To take such a dependency into account, one may for instance assume that the underlying en-
vironment process is a Markov process J in continuous time and that in each state of J , the claim
counting process N is a Poisson process. The resulting bivariate process (J,N) is then called aMarkov-
Modulated Poisson Process (MMPP). MMPPs have been used in different fields during the past forty
years, in particular in data traffic systems (see e.g. Salvador et al. [27]), for ATM sources (see Kesidis
et al. [9]), in manufacturing systems (see e.g. Ching et al. [4]) or even in ecology (see for example
Skaug [29] for applications of MMPPs to clustered line transect data). The MMPP cookbook by Fischer
andMeier-Hellstern [6] sumsup themain results and ideas thatwere behind the rise ofMMPPapplica-
tions. The idea of considering Markov modulation in insurance was first introduced by Asmussen [2];
the obtained model can capture the fact that the insurance claim frequency may be modified if cli-
matic, political or economic factors change. Such a model has gained considerable attention recently:
see for instance Lu and Li [15], Ng and Yang [18], Zhu and Yang [33] and Wei et al. [32]. The parame-
ters of anMMPP are often estimated using aMaximumLikelihood Estimator (MLE),whose consistency
was proved in Rydén [23]. Variousmethods have been suggested to compute theMLE; a standard tool
is the Expectation–Maximization (EM) algorithm, see Rydén [25] for the implementation of this pro-
cedure for the estimation of the parameters of an MMPP. We finally mention that in a recent paper,
Guillou et al. [7] introduced a new MMPP-driven loss process in insurance with several lines of busi-
ness, showed the strong consistency of the MLE and fitted their model to real sets of insurance data
using an adaptation of the EM algorithm.

Of course, once the MMPP model is fitted, it is possible to use Bayesian techniques to determine
probabilities to be in each state and consequently the average number of events during the next
period (see e.g. Scott [28]). If external information is present, then it is possible to enrich this Bayesian
estimation. This is for example the case for some long-tailed non-life insurance businesses, where
indices of sectorial inflation can provide useful information. For reinsurance cycles, large claims that
may cause a cycle phase change as well as other aspects of competition or adverse development
of reserves can sometimes be plugged into the Bayesian estimation process. For some other risks
however, even if we feel that a phenomenon might have an impact on the claim frequency, it may
be very hard to come up with a measure of such a phenomenon (for instance, the El Niño–La Niña
phenomena). In that case our non-Bayesian framework is of interest for actuarial risk assessment.

Furthermore, many examples of practical applications in insurance display some sort of seasonal
variation. For example, theft in garages are more frequent before Christmas as people tend to store
Christmas gifts there, fire risk is more intense in the summer, and hurricanes occur mostly between
June and November on the East Coast of the United States. These random, cyclic factors and their
impact on insurance risk, which need to be taken into account to carry out a proper regime switching
analysis, are yet to be understood and forecasted. In an inhomogeneous context with deterministic
intensity function, Lu andGarrido [14] have fitted double-periodic Poisson intensity rates to hurricane
data, for particular parametric forms (like double-beta and sine-beta intensities) to hurricane data.
Helmers et al. [8] have provided an in-depth theoretical statistical analysis of such doubly periodic
intensities.We aim at carrying out a theoretical statistical analysis in a stochastic intensity framework
with seasonality.

An important aspect of pricing in non-life insurance concerns segmentation: thanks to generalized
linear models or more sophisticated techniques, the insurer takes into account explanatory variables
to adapt the price of the contract and avoid adverse selection (see Ohlsson and Johansson [19]).
Besides, individual ratemaking is updated thanks to credibility adjustments in order to take into
account the claimhistory of each policyholder or contract (see Bühlmann andGisler [3]). Our approach
is only operational and interesting at the aggregated risk management level, and it would be very
challenging to try to combine it with regression techniques, from a theoretical point of view as well
as the practical point of view since a very large number of data points would be needed to ensure that
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