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a b s t r a c t

In this paper, we study the weighted composite quantile regression (WCQR) for general
linear model with missing covariates. We propose the WCQR estimation and bootstrap
test procedures for unknown parameters. Simulation studies and a real data analysis are
conducted to examine the finite performance of our proposed methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Regressionmodelswithmissing covariates are appliedwidely inmany scientific areas, especially in biomedical and social
sciences (see Little and Rubin, 2002; Tsiatis, 2006 for detailed reviews). The missing at random (MAR) in sense of Robins
(1976) is a common assumption for statistical analysis with missing data. When covariates are MAR, the inverse probability
weighting approach has received considerable attention. For instance, Robins (1994) proposed the inverse probability
weighting estimator for parametricmodelwithmissing covariates;moreover,Wang et al. (1998) provided a local version for
generalized linear model with missing covariates. In recent years, Liang et al. (2004), Liang (2008), Wang (2009), andWong
et al. (2009) considered the weighted estimation for semiparametric and nonparametric model with missing covariates,
based on the inverse probability weighting idea. However, many of these weighted estimation procedures are built on least
squares (LS), which can produce an unreliable estimator when the model error has heavy-tailed or skewed distribution. The
efficient and stable estimation of regressionmodel withmissing covariates is still a challenging problem. Consider a general
linear model with missing covariates as follows:

Y = φT (X)β + ϵ, (1)

where Y is an observable response, φ(·) is a known p× 1 vector function, β is a p× 1 vector of unknown coefficients. Some
values of the covariates, denoted as V with X = (U, V ), may be missing at random for some reasons.

To obtain the desirable robust estimator, Sherwood et al. (2014) suggested inverse probability weighted quantile
regression with missing covariates. However, a single quantile regression estimation procedure including least absolute
deviation (LAD) one can lead to an arbitrary small relative efficiency when compared with LS. Therefore, we do not consider
it as a safe alternative to LS. To overcome this drawback, Zou and Yuan (2008) developed the composite quantile regression
(CQR) estimation procedure for the linear model. Kai et al. (2011), and Guo et al. (2012) proposed the efficient estimators

∗ Corresponding author.
E-mail address: tljlqz@163.com (L. Tang).

http://dx.doi.org/10.1016/j.spl.2014.08.003
0167-7152/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2014.08.003
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2014.08.003&domain=pdf
mailto:tljlqz@163.com
http://dx.doi.org/10.1016/j.spl.2014.08.003


16 Z. Ning, L. Tang / Statistics and Probability Letters 95 (2014) 15–25

for semiparametric varying-coefficient partially linear models based on CQR method. Recently, Jiang et al. (2012) and Tang
et al. (2012) further extended the CQR method for linear model with censored data. The CQR can significantly improve the
relative efficiency of the resulting estimator. Inspired by this nice performance, we consider inverse probability WCQR for
model (1), when the selection probabilities are known, estimated nonparametrically and parametrically, respectively.

In statistical modelling, some prior information about the unknown parameters might be available from outside sample
sources. To the best of our knowledge, use of reliable prior information can greatly improve upon the efficiency of regression
analysis. However, once these prior conditions have been imposed, the first task is to test whether they are true. There is a
little literature on thehypothesis test of parametric andnonparametricmodelswithmissing response. For example, Sun et al.
(2009) investigated the hypothesis test of general linearmodelwithmissing response. However, research on parametric test
of regressionmodel withmissing covariates has been comparatively limited. In this paper, we develop theWCQR-based test
procedure for unknown parameters in model (1). Without loss of generality, we consider the following linear hypothesis:

H0 : Aβ = b v.s. H1 : Aβ ≠ b, (2)

where A is a k × p known matrix with rank(A) = k (0 < k ≤ p) and b is a k × 1 vector of known constant vector. From the
idea of Zhao (2004) and Chen et al. (2008), we construct the test statistic for hypothesis (2) based on the weighted residual
sums of quantile from WCQR fit. Finally, we propose a wild bootstrap approach to determine the critical value of the test
statistic, which avoids estimating asymptotic distribution of test statistic.

The paper is organized as follows. In Section 2, we propose the weighted composite quantile regression estimation and
test for general linear model with covariates missing. We conduct extensive simulation studies and a real data analysis
to illustrate the proposed methods in Section 3. We conclude the article with a discussion in Section 4. All the technical
conditions and proofs are relegated to the Appendix.

2. Methodology

Let {(Yi, δi,Ui, Vi)}
n
i=1 be a random sample from model (1), such that

Yi = φT (Xi)β + ϵi, i = 1, 2, . . . , n (3)

where δi is a missing indicator individual, δi = 0 if Vi is missing, otherwise δi = 1. Suppose that Vi is MAR in sense that

π(Zi) = P(δi = 1|Yi, Vi,Ui) = P(δi = 1|Y ,Ui), (4)

where Zi = (Yi,UT
i )T . Furthermore, we assume that β is the same across different quantile models. Our interest lies in both

estimation and test for model (3) based on WCQR approach.

2.1. Estimation

Let ρτ (r) = τ I(r ≥ 0) + (1 − τ)I(r < 0) be the check loss function of τ quantile regression. Denote τk = k/(1 + q)
where q is a composite level. When the selection probability function π(·) is known, we define the WCQR estimator β̂ of β
as


â, β̂


= argmin

a,β

q
k=1

n
i=1

δi

π(Zi)
ρτk


Yi − ak − φ(Xi)

Tβ

, (5)

where a = (a1, . . . , aq), and ak is the τkth quantile of ϵ.
In practice, the selection probability function π(·) is usually unknown. It is well known that nonparametric smoothing

is a powerful tool to estimate unknown selection probability. Let L(·) be a 2-dimensional symmetric kernel function. The
nonparametric smoothing estimator of π(z) based on the data {(Zi, δi)}ni=1 is defined as

π̂(z) =

n
j=1

δjLh

z − Zi


n

j=1
Lh


z − Zj

 , (6)

where Lh(·) = Lh(·/h)/h2 is kernel function and h is a bandwidth. Let π̂(z) be nonparametric smoothing estimator of π(z).
Then WCQR estimator with π̂(z), denoted by β̂N(t), can be defined as


âN , β̂N


= argmin

a,β

q
k=1

n
i=1

δi

π̂(Zi)
ρτk


Yi − ak − φ(Xi)
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
. (7)
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