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a b s t r a c t

Recently, a class of machine learning-inspired procedures, termed kernel machine meth-
ods, has been extensively developed in the statistical literature. In this note, we construct
a so-called ‘adaptively minimax’ kernel machine. Such a construction highlights the limits
on the interpretability of such kernel machines.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the availability of massive datasets from scientific and medical disciplines, increasing attention is being paid to
the use of data mining techniques. This has in turn sparked interest as to the statistical properties of the methodologies.
One example is support vector machines (Cristianini and Shawe-Taylor, 2000). This is a supervised learning procedure that
attempts to find a margin-maximizing hyperplane that separates two groups. Liu et al. (2007) developed a statistical frame-
work and equivalence in which the support vector machine regression with a continuous outcome is identical to a certain
mixed effects model. This equivalence is reviewed in Section 2. The kernel machine has been utilized heavily with appli-
cations to genomics (Liu et al., 2007, 2008; Kwee et al., 2008; Cai et al., 2011; Wu et al., 2010, 2011; Pan, 2011; Kim et al.,
2012) and imaging (Ge et al., 2012). These articles typically show power gains for the kernel machine-based tests relative
to their fixed-effects counterparts due to shrinkage brought on by the use of random effects.

Given the recent popularity of the kernelmachinemethodology, it is important to understand its theoretical foundations.
Many of the previous authors have used estimation and attendant inference results from the mixed model framework. In
this article, we seek to offer a viewpoint on the kernel machine methodology. The concept of minimaxity is well-studied in
statistics and has also been addressed in the context of nonparametric density estimation and regression problems bymany
authors (e.g., Fan, 1992). For recent problems in high-dimensional data analysis, there is a lot of interest in understanding
rates of convergence for minimax estimators (e.g., Cai and Zhou, 2012; Birnbaum et al., 2013; Dicker, in press; Raskutti et al.,
2011).

In this paper, the adaptivelyminimax estimatorwill be very different in structure relatively to previously studied adaptive
kernel methods. The paper proceeds as follows. In Section 2 we review the kernel machine methodology as previously
developed in the literature. Section 3 features the construction of the adaptive kernel machines using simple thresholding
ideas, for which we prove asymptotic minimaxity results. Section 4 concludes with some discussion.
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2. Kernel machine methodology: model and estimation

We first review the kernelmachine framework of Liu et al. (2007). For the sake of exposition, wewill work in the case that
there is no parametric component. For i (i = 1, . . . , n), we observe (Yi,Xi), where Yi is a normally distributed continuous
outcome, and Xi is a p × 1 vector of covariates. We assume the following model:

Yi = β0 + h(Xi) + ei, (1)

where β0 is an intercept term, h(zi) is an unknown centered smooth function, and the errors ei are assumed to be indepen-
dently and identically distributed from a N(0, σ 2) distribution. Assume that yi (i = 1, . . . , n) are centered so that β0 drops
out of the model (1).

One issue that arises in (1) is how to specify basis functions for h, especially in the case of high-dimensional X. The ad-
vantage of kernel methods as defined in machine learning contexts is that one specifies a kernel function K(x, x′) instead of
the basis functions. Specifically, a kernel function K(x, x′) is a bounded, symmetric, positive function satisfying

K(x, x′)g(x)g(x′)dxdx′
≥ 0, (2)

for any arbitrary square integrable function g(x) and all x, x′
∈ Rp. The kernel function can be viewed as a measure of

similarity between the covariate vectors x and x′. From Mercer’s Theorem (Cristianini and Shawe-Taylor, 2000, p. 33), any
kernel function satisfying some regularity conditions implicitly specifies a unique function space spanned by a particular
set of basis functions (features), and vice versa. We note now that the conditions for a proper kernel function imply that the
observed data matrix K, with (i, j)th entry K(Xi,Xj), will be positive definite.

Assume that the nonparametric function h(·) ∈ HK , where HK is a reproducing kernel Hilbert space (e.g., Wahba, 1990).
Then there is a 1–1 correspondence between K and the corresponding RKHS. Estimation of β and h(·) proceeds by maxi-
mizing the scaled penalized likelihood function

J(h, β) = −
1
2

n
i=1

[yi − h(xi)]2 −
1
2
λ∥h∥2

HK
, (3)

where λ > 0 is a tuning parameter and controls the tradeoff between goodness of fit and complexity of the model. Exploit-
ing a primal/dual equivalence from Karush–Kuhn–Tucker theory, one can show that the estimator of the nonparametric
function h(·) evaluated at the design points (x1, . . . , xn)T is estimated ash = λ−1K (I + λ−1K )−1y, (4)

where y = (y1, . . . , yn). In Liu et al. (2007), it was shown that the estimates of h in (4) can be derived as arising from a
random effects model of the following form:

y = h + e, (5)

where h is an n × 1 vector of random effects following h ∼ N(0, τK ), τ is a scale parameter, and e ∼ N(0, σ 2I). Because
of this equivalence, all regression parameters in the model can be estimated by maximum likelihood, while the variance
component parameters can be estimated by restricted maximum likelihood.

Remark 1. Liu et al. (2007, 2008) used the standardmixed effects model framework for estimation and attendant inference
result. While they did not prove asymptotic normality results in that work, one could use Theorems 1 and 2 from Mardia
and Marshall (1984) or the work of Cressie and Lahiri (1993) to derive consistency and asymptotic normality results for
the kernel machine estimators of the fixed and random effects. Here, we will investigate different properties of the kernel
machine relative to those studied by the previously mentioned authors.

3. Shrinkage, decision-theoretic framework and minimaxity

We will begin by assuming that λ > 0 is fixed. In addition, we assume the model (1) without the intercept holds and
further that X1, . . . ,Xn are treated as fixed. We will use lower-case notation, i.e. x1, . . . , xn, to denote this. We can writeh
from (4) as H(I + H)−1Y, where H = λ−1K and I is the n × n identity matrix. Thus, we have defined the kernel machine in
terms of an operator P mapping from Rn to Rn, where P = H(I + H)−1. By the positive definiteness of K, H is also positive
definite so that the following equivalences hold:

H = UDnU′ (6)

I + H = U(I + Dn)U′ (7)

where U is an n × n orthonormal matrix such that UU′
= U′U = I, and Dn is a diagonal matrix with entries equaling the

eigenvalues of H. Because H is symmetric and positive definite, all the eigenvalues will be positive. Note that these results
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