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a b s t r a c t

We give the cumulative distribution function (cdf) of Mn, the (element-wise) maximum
of a sequence of n observations from a multivariate AR(p) process. We do the same for
a multivariate MA(p) process. Solutions are first given in terms of repeated integrals and
then for the case, where the marginal cdf of the observations is absolutely continuous. The
cdf of the multivariate maximum Mn is then given as a weighted sum of the nth powers
of the eigenvalues of a non-symmetric Fredholm kernel. The weights are given in terms of
the left and right eigenfunctions of the kernel.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Suppose X1,X2, . . . ,Xn are independent and identical s-variate observations. The need for the distribution of the
following arises in many applied areas:

Mn = max (X1,X2, . . . ,Xn)

for n ≥ 1, where this is defined as the s-vector with jth element

Mn,j = max

X1,j, X2,j, . . . , Xn,j


and Xi,j is the jth element of Xi. Examples include: if Xi contains the levels of s different rivers on the ith day then Mn will
contain the maximum river levels over n days; if Xi contains the sea levels at s different ports on the ith day then Mn will
contain the maximum sea levels over n days; if Xi contains the temperatures at s different cities on the ith day thenMn will
contain the maximum temperatures over n days; if Xi contains the risks at s different markets on the ith day then Mn will
contain the maximum risks over n days; and so on.

There is considerable theoretical development on the distribution of Mn (Galambos, 1987; de Haan and Ferreira, 2006;
Resnick, 2008). Much of the theory gives the limiting distribution of Mn as n → ∞. In practice, n is finite, so such theory is
not very useful. Furthermore, multivariate data are very limited, so n can never be considered large enough for the limiting
distribution to be used as an approximation. So, what is needed are theoretical developments on the exact distribution of
Mn for a finite n.

In this note, we shall focus on the distribution ofMn for multivariate ARMA (autoregressive-moving average) processes.
There has been little work on this distribution. We are aware only of the work of Davis et al. (1985), Martins and Ferreira
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(2005), Klüppelberg and Pergamenchtchikov (2007) and Ferreira and Ferreira (2013). Sen and Tan (2012) provide an
excellent review of multivariate extreme value theory for time series. All these papers provide the limiting distributions
of Mn or assume that Xi come from a specific class. We are aware of no work giving the exact distribution of Mn for a finite
n for multivariate ARMA processes.

This note continues the application of a powerful newmethod for obtaining the exact distribution of extremes of n corre-
lated observations as weighted sums of nth powers of certain eigenvalues. The method was first illustrated for a univariate
moving average of order 1 in Withers and Nadarajah (2014a) and a univariate autoregressive process of order 1 in Withers
and Nadarajah (2011).

Let {ei} be independent and identically distributed random variables from some cumulative distribution function (cdf) F
on Rs. Let


ρi


be s × s real matrices. For convenience we assume that ρ0 = I, the identity matrix. In Sections 2 and 4, we

consider the MMA(p) process (multivariate moving average process of order p)

Xi =

p
j=0

ρjei−j. (1)

In Sections 3 and 5, we consider the MAR(p) process (multivariate autoregressive process of order p)

Xi −

p
j=1

ρjXi−j = ei. (2)

We give expressions for the cdf of the multivariate maximumMn under the models (1) and (2). The expressions that we
give hold for any finite n, even if the limiting cdf of Mn as n → ∞ does not exist. Many multivariate distributions like the
multivariate Poisson and multivariate geometric distributions do not yield non-degenerate forms for the limiting cdf ofMn.
Hence, our results are more general and better applicable than the results of classical extreme value theory.

In Sections 2 and 3, the cdf is given in terms of n repeated integrals via recurrence relationships. In Sections 4 and 5, we
consider the casewhen F is absolutely continuouswith probability density function (pdf) f with respect to Lebesguemeasure
on Rs. We show that the integral operators on Rps used in the previous sections are Fredholm operators. This allows us to
express the cdf ofMn in each case as a weighted sum of nth powers of its eigenvalues, with the weights being given in terms
of the left and right eigenfunctions.

The main results of this note are: Theorem 2.1, Remark 2.1 following easily from Theorem 2.1, Theorem 3.1, Remark 3.1
following easily fromTheorem3.1, Theorem4.1, Theorem4.2, Remark 4.1 following easily fromTheorem4.2 andRemark 5.1.
Example 2.1, Figs. 1–3 and the three paragraphs following Example 2.1 illustrate the results of Theorem 2.1, Remark 2.1,
Theorem 4.1 and Theorem 4.2. Example 3.1 and Fig. 4 illustrate the results of Theorem 3.1, Remark 3.1, Remark 5.1.

Set I(A) = 1 if A is true, I(A) = 0 if A is false, and M0 = −∞ ∈ Rs. For y1, . . . , yp ∈ Rs, set y′
=

y′

1, y
′

2, . . . , y
′
p


∈ Rps

and similarly for z′. For a, b functions on Rp, set

a =


a (y1) dy1 =


Rp a (y1) dy1 and similarly for functions on Rps and

similarly for

ab. Generally, we shall suppress dependency on x.

2. Solutions for the MMA(p) using repeated integrals

Here, we consider the MMA(p) process (1). Set

Gn(y) = P

Mn ≤ x, en−j ≤ yj+1, j = 0, 1, . . . , p − 1


(3)

for n ≥ 0. Our goal is to determine un = P (Mn ≤ x) = Gn(∞), where ∞ ∈ Rps. Theorem 2.1 gives an expression for Gn(y).
Remark 2.1 deduces an expression for Gn(∞) and thus for un.

Theorem 2.1. We have Gn of (3) satisfying the recurrence relation

Gn(y) = KGn−1(y)

for n ≥ 1, where

Kh(y) =


z1≤y2, ..., zp−1≤yp

F


min


y1, x −

p
j=1

ρjzj


dh(z) (4)

and the restriction over the range of integration is removed if p = 1. So,

Gn(y) = KnG0(y) (5)

for n ≥ 0.
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