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a b s t r a c t

For order q kernel density estimators we show that the constant bq in bias = bqhq
+ o(hq)

can be made arbitrarily small, while keeping the variance bounded. A data-based selection
of bq is presented and Monte Carlo simulations illustrate the advantages of the method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let f denote a density, K an integrable function on R such that

Kdt = 1 and let X1, . . . , Xn be i.i.d. random variables

with density f . Consider the kernel estimator of f (x)

fh(x, K) =
1
n

n
j=1

1
h
K


x − Xj

h


, h > 0. (1)

Denoteαi(K) =

xiK(x)dx the ithmoment of K and let K be a kernel of order q, that isαj(K) = 0, j = 1, . . . , q−1, αq(K) ≠

0. It is well-known that the bias is proportional to αq(K)hq if f is q-smooth in some sense (Devroye, 1987; Scott, 1992;
Silverman, 1986; Wand and Jones, 1995).

The usual approach is to stick to some K and be content with the resulting αq(K). The purpose of this paper is to show
that it pays to reduce αq(K) by choosing a suitable K . Despite the bias being proportional to αq(K)hq, the benefits of the
suggested approach are not obvious because as the qth moment is made smaller, the variance of the estimator may go up.
Our construction of K allows us to control the variance. Our results imply that among all kernels of order q with uniformly
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bounded variances there is no kernel with the least nonzero |αq(K)|. The issue of selecting the kernel order does not arise
in the approach suggested in Mynbaev and Martins Filho (2010).

In case of L1 convergence the main idea can be illustrated using the corresponding bias notion from Devroye (1987). Let
bias be defined as


|f ⋆ Kh − f |dt where Kh(x) = K(x/h)/h. If K is of order q, f has q − 1 absolutely continuous derivatives

and an integrable derivative f (q), then by Devroye (1987, Theorem 7.2)

q!


|f ⋆ Kh − f |dt/

hq


|f (q)

|dt


→ αq(K), h ↓ 0.

Here αq(K) can be made as small as desired using our Theorem 2.
We call a free-lunch effect the fact thatαq(K) can bemade as small as desired, without increasing the density smoothness

or the kernel order. Of course, in finite samples bias cannot be eliminated completely. Put it differently, for very small αq(K)
sample variance starts to dominate the effect of small bias.

For simplicity, in our main results in Section 2 we consider only classical smoothness characteristics. The simulation
results in Section 3 compare our kernel performance with that of three well-known kernel families. The overall conclusion
is that a better estimation performance is not necessarily a consequence of some optimization criterion and can be achieved
by directly targeting the bias of the estimator. All proofs are provided in Appendix A, while Appendix B contains the code
used for simulations (both are supplied as supplemental material, see Appendix A).

2. Main results

Multiplication by polynomials (Deheuvels, 1977; Wand and Schucany, 1990) is one of several ways to construct
higher-order kernels. Withers and Nadarajah (2013) have explored the procedure of transforming a kernel K into a
higher-order kernel TaK via multiplication of K by a polynomial of order q, (TaK)(t) =

q
i=0 ait

i

K(t), with a suitably

chosen vector of coefficients a = (a0, . . . , aq)′ ∈ Rq+1. Unlike several authors who chose the polynomial subject to some
optimization criterion (see Berlinet, 1993, Fan and Hu, 1992, Gasser and Muller, 1979, Lejeune and Sarda, 1992 and Wand
and Schucany, 1990) Withers and Nadarajah with their definition of the polynomial directly targeted moments of the re-
sulting kernel. In their Theorem 2.1, they defined a polynomial transformation in such a way that the moments of the new
kernel numbered 1 through q − 1 are zero. They did not notice that the qth moment can be targeted in the same way and
can be made as small as desired and that the variance of the resulting estimator retains the order 1/(nh) as the qth moment
is manipulated. This is what we do here. Besides, we show that not only variance but all the higher-order terms in h in the
Taylor decomposition of the bias and variance can be controlled not to increase.

We do this under two sets of assumptions. The first set is that the density is infinitely differentiable and all moments of
K exist and the second is that the density has a finite number of derivatives and the kernel and its square possess a finite
number of moments. We give complete proofs for the first set, because part of the argument is new and it can be extended
to justify some formal infinite decompositions from Withers and Nadarajah (2013). The proof for the second set goes more
along traditional lines (except for controlling higher-order terms) and is therefore omitted.

Let βj(K) =


R |K(t)t j|dt denote the jth absolutemoment of K . The estimator of f (l)(x) is obtained by differentiating both
sides of (1) l times.

Theorem 1. Suppose that f is infinitely differentiable and K has a continuous derivative of order l. Further assume that K and
K (l) have absolute moments of all orders,

lim sup
j→∞

 f (j)(x)
j!

max

βj+1(K), βj+1(K (l))

1/j = 0, (2)K (l)

C(R)

= sup
t∈R

K (l)(t)
 < ∞. (3)

Then

Ef (l)
h (x, K) =

∞
i=0

f (i+l)(x)
i!

(−h)iαi(K), (4)

var

f (l)
h (x, K)


=

1
nh2l+1


∞
i=0

f (i)(x)αi(M)

i!
(−h)i − h


hlEf (l)

h (x, K)
2


(5)

where M =

K (l)

2 and the series converge for all h ∈ R. Consequently, if K is a kernel of order q, then

Ef (l)
h (x, K) − f (l)(x) =

f (q+l)(x)
q!

(−h)qαq(K) + O(hq+1), (6)

var

f (l)
h (x, K)


=

1
nh2l+1


f (x)


R
M(t)dt + O(h)


. (7)
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