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a b s t r a c t

Given stationary time series data, we study the problem of finding the best linear combi-
nation of a set of lag window spectral density estimators with respect to the mean squared
risk. We present an aggregation procedure and prove a sharp oracle inequality for its risk.
We also provide simulations demonstrating the performance of our aggregation procedure,
given Bartlett and other estimators of varying bandwidths as input. This extends work by
P. Rigollet and A. Tsybakov on aggregation of density estimators.
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0. Introduction

Consider stationary time series data X1, . . . , Xn having mean zero and spectral density

p(λ) :=
1
2π

∞
j=−∞

γ (j)e−iλj, λ ∈ [−π, π) (1)

where γ (k) is the autocovariance at lag k. For an estimator p̂(X1, . . . , Xn) of p, define the L2-risk

Rn(p̂, p) = E
 π

−π

(p̂(x) − p(x))2 dx


. (2)

Let p̂1, . . . , p̂J be a collection of lagwindow (i.e. kernel) spectral density estimators of p—see Eq. (5) for a precise definition.
We investigate the construction of a new estimator p̂Ln which is asymptotically as good, in terms of L2-risk, as using the best
possible linear combination of p̂1, . . . , p̂J ; more precisely, p̂Ln satisfies the oracle inequality

Rn(p̂Ln, p) ≤ inf
λ∈RJ

Rn


J

j=1

λjp̂j, p


+ ∆n,J (3)

where ∆n,J is a small remainder term independent of p.
Such an estimator may find a variety of applications. For instance, one may try to bypass the difficult issue of bandwidth

(ormodel) selection by setting the p̂s to cover awide spread of possibly reasonable bandwidths/models. Alternatively, when
a linear combination of kernels outperforms all the individual inputs, e.g. when the p̂s are Bartlett windows as in Politis and
Romano (1995), our aggregating estimator is capable of discovering it.
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Kernel density estimation dates back to Rosenblatt (1956) and Parzen (1962); Priestley (1981) and Brillinger (1981)
discuss its application to spectral densities. More recently, Yang (2000) and Rigollet and Tsybakov (2007) analyzed
aggregation of probability density estimators, while Wang et al. (2011) studied the related problem of linear aggregation in
nonparametric regression. We extend Rigollet and Tsybakov (2007)’s work to spectral estimation.

To perform aggregation, we use a sample splitting scheme. The time series data is divided into a training set, a buffer
zone, and a validation set; with an exponential mixing rate, the buffer zone need not be more than logarithmic in the size
of the other sets to ensure approximate independence between the training and validation sets.

The estimator, and theoretical results concerning its performance, are presented in Section 1. Simulation studies are
conducted in Section 2, and our conclusions are stated in Section 3.

1. Theoretical results

1.1. Aggregation procedure

Split the time series X1, . . . , Xn into a training set X1, . . . , Xnt , a buffer zone Xnt+1, . . . , Xnt+nb , and a validation set
Xnt+nb+1, . . . , Xnt+nb+nv , where the first and third sets can be treated as independent. We investigate appropriate choices of
nt , nb, and nv at the end of this section.

With the training set, we produce an initial estimate

γ̂1(k) :=
1
nt

nt−k
j=1

Xj+kXj (4)

of the autocovariance function, after centering the data. (In practice, the data will be centered to the sample mean rather
than the true mean, but the resulting discrepancy is asymptotically negligible w.r.t. autocovariance and spectral density
estimation. So, for simplicity of presentation, we center at the true mean above.)

We then propose the following candidate estimators:

pj(λ) :=
1

√
2π

bj
k=−bj

γ̂1(k) · wj


k
bj


eikλ

√
2π

(5)

where the bjs (j = 1, . . . , J) are candidate bandwidths arrived at via some selection procedure, and the wjs (j = 1, . . . , J)
are lag windows with wj(0) = 1, wj(x) ≤ 1 for x ∈ (−1, 1), and wj(x) = 0 for |x| ≥ 1 for all j. The pjs have some linear span
L in L2 whose dimension is denoted byM whereM ≤ J . Now construct an orthonormal basis {φj} (j = 1, . . . ,M), and note
that the φjs are – by necessity – trigonometric polynomials of degree at most b := maxj bj, i.e.,

φj(λ) =

b
k=−b

aj,k
eikλ

√
2π

(6)

so the coefficient aj,k is the inner product of φj and eikλ
√
2π

in L2.
Then, based on our validation set, we produce a different estimate of the autocovariance function, namely

γ̂2(k) :=
1
nv

nv−k
j=1

Xnt+nb+j+kXnt+nb+j (7)

and compute the coefficients

K̂j :=
1

√
2π

b
k=−b

γ̂2(k)aj,k. (8)

Finally, our proposed aggregate estimator of the spectral density is given by

p̂(λ) :=

M
j

K̂jφj(λ). (9)

1.2. Performance bounds

We start with the simplest mixing assumption, m-dependence (i.e., that for all positive integers j and k where k ≥ m, Xj
and Xj+k are independent).
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