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a b s t r a c t

The Projection Congruent Subset (PCS) is a new method for finding multivariate outliers.
PCS returns an outlyingness index which can be used to construct affine equivariant
estimates of multivariate location and scatter. In this note, we derive the finite sample
breakdown point of these estimators.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Outliers are observations that depart from the pattern of the majority of the data. Identifying outliers is a major concern
in data analysis because a few outliers, if left unchecked, can exert a disproportionate pull on the fitted parameters of any
statistical model, preventing the analyst from uncovering the main structure in the data.

To measure the robustness of an estimator to the presence of outliers in the data, Donoho (1982) introduced the notion
of finite sample breakdown point. Given a sample and an estimator, this is the smallest number of observations that need
to be replaced by outliers to cause the fit to be arbitrarily far from the values it would have had on the original sample.
Remarkably, the finite sample breakdown point of an estimator can be derived without recourse to concepts of chance or
randomness using geometrical features of a sample alone (Donoho, 1982). Recently, Vakili and Schmitt (2014) introduced
the Projection Congruent Subset (PCS) method. PCS computes an outlyingness index, as well as estimates of location and
scatter derived from it. The objective of this paper is to establish the finite sample breakdown of these estimators and show
that they are maximal.

Formally, we begin from the situationwhereby the datamatrixX , is a collection of n so called genuine observations drawn
from a p-variate model F with p > 1. However, we do not observe X but an n × p (potentially) corrupted data set X ε that
consists of g < n observations from X and c = n − g arbitrary values, with ε = c/n, denoting the (unknown) rate of
contamination.

Historically, the goal of many robust estimators has been to achieve high breakdown while obtaining reasonable
efficiency. PCS belongs to a small group of robust estimators that have been designed to also have low bias (see Maronna
et al., 1992, Adrover and Yohai, 2002 and Adrover and Yohai, 2010). In the context of robust estimation, a low bias estimator
reliably finds a fit close to the one it would have foundwithout the outliers, when c 6 n−hwith h = ⌈(n+p+1)/2⌉. To the
best of our knowledge, PCS is the first member of this group of estimators to be supported by a fast and affine equivariant
algorithm (FastPCS) enabling its use by practitioners.
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The rest of this paper unfolds as follows. In Section 2, we detail the PCS estimator. In Section 3, we formally detail the
concept of finite sample breakdown point of an estimator and establish the notational conventions we will use throughout.
Finally, in Section 4, we prove the finite sample breakdown point of PCS.

2. The PCS criterion

Consider a potentially contaminated data set X of n vectors xi ∈ Rp, with n > p + 1 > 2. Given all M =
 n
h


possible

h-subsets {Hm
}
M
m=1, PCS looks for the one that is most congruent along many univariate projections. Formally, given an

h-subset Hm, we denote B(Hm) the set of all vectors normal to hyperplanes spanning a p-subset of Hm. More precisely, all
directions a ∈ B(Hm) define hyperplanes {x ∈ Rp

: x′a = 1} that contain p observations of Hm. For a ∈ B(Hm) and xi ∈ X ,
we can compute the squared orthogonal distance, d2i , of xi to the hyperplane defined by a as

d2i (a) =
(a′xi − 1)2

∥a∥2
. (2.1)

The set of the h observations with smallest d2i (a) is then defined as

Ha
= {i : d2i (a) 6 d2(h)(a)}, (2.2)

where d(h) denotes the hth-order statistic of a vector d.
We begin by considering the case in which d2(h)(a) > 0. For a given subset Hm and direction awe define the incongruence

index of Hm along a as

I(Hm, a) := log

 ave
i∈Hm

d2i (a)

ave
i∈Ha

d2i (a)

 (2.3)

with the conventions that log(0/0) := 0. This index is always positive and will be smaller the more members of Hm

correspond with, or are similar to, the members of Ha. To remove the dependency of Eq. (2.3) on a, we measure the
incongruence of Hm by considering the average over many directions a ∈ B(Hm) as

I(Hm) := ave
a∈B(Hm)

I(Hm, a). (2.4)

The optimal h-subset, H∗, is the one satisfying the PCS criterion:

H∗
= argmin

{Hm}
M
m=1

I(Hm).

Then, the PCS estimators of location and scatter are the sample mean and covariance of the observations with indexes in H∗:
t∗(X), S∗(X)


=


ave
i∈H∗

xi, cov
i∈H∗

xi


.

Finally, we have to account for the special case where d2(h)(a) = 0. In this case, we enlarge H∗ to be the subset of all
observations lying on a. More precisely, if ∃ a∗

∈ B(H∗) : |{i : d2i (a
∗) = 0}| > h, then H∗

= {i : d2i (a
∗) = 0}.

2.1. Illustrative example

To give additional insight into PCS and the characterization of a cloud of point in terms of congruence, we provide the
following example. Fig. 1 depicts a data set X ε of 100 observations, 30 of which come from a cluster of outliers on the right.
For this data set, we draw two h-subsets of 52 observations each.

Subset H1 (dark blue diamonds) contains only genuine observations, while subset H2 (light-orange circles) contains
27 outliers and 25 genuine observations. Finally, the 17 observations belonging to neither h-subset are depicted as black
triangles. For illustration’s sake, we selected the members of H2 so that their covariance has smaller determinant than any
h-subsets formed of genuine observations. Consequently, robust methods based on a characterization of h-subsets in terms
of density alone will always prefer the contaminated subset H2 over any uncontaminated h-subset (and in particular H1).

The outlyingness index computed by PCS differs from that of other robust estimators in two important ways. First, in
PCS, the data is projected onto directions given by p points drawn from the members of a given subset, Hm, rather than
indiscriminately from the entire data set. This choice ismotivated by the fact thatwhen ε and/or p are high, the vastmajority
of random p-subsets of {1, . . . , n}will be contaminated. If the outliers are concentrated, this yields directions almost parallel
to each other. In contrast, for an uncontaminatedHm, our sampling strategy always ensures a wider spread of directions and
this yields better results.
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