ELSEVIER

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Uniform asymptotics for the tail probability of weighted sums with heavy tails

Chenhua Zhang

Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406-5045, USA

ARTICLE INFO

Article history: Received 10 August 2013 Received in revised form 21 July 2014 Accepted 22 July 2014 Available online 4 August 2014

MSC: 41A60 62P05 62E20 91B30

Keywords:
Uniform long-tailedness
Long-tailed distribution
h-insensitive function
Dominated variation
Ouasi-asymptotical independence

ABSTRACT

This paper studies the tail probability of weighted sums of the form $\sum_{i=1}^{n} c_i X_i$, where random variables X_i 's are either independent or pairwise quasi-asymptotically independent with heavy tails. Using the idea of uniform long-tailedness, the uniform asymptotic equivalence of the tail probabilities of $\sum_{i=1}^{n} c_i X_i$, $\max_{1 \le k \le n} \sum_{i=1}^{k} c_i X_i$ and $\sum_{i=1}^{n} c_i X_i^+$ is established, where X_i 's are independent and follow the long-tailed distribution, and c_i 's take value in a broad interval. Some further uniform asymptotic results for the weighted sums of X_i 's with dominated varying tails are obtained. An application to the ruin probability in a discrete-time insurance risk model is presented.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all asymptotic and limit relations are taken as $x \to \infty$ unless otherwise stated. For independently and identically distributed (i.i.d.) subexponential random variables X_i , $i \ge 1$, it is well-known that, for any $n \ge 2$,

$$P\left(\sum_{i=1}^{n} X_i > x\right) \sim P\left(\max_{1 \le k \le n} \sum_{i=1}^{k} X_i > x\right) \sim P\left(\sum_{i=1}^{n} X_i^+ > x\right) \sim \sum_{i=1}^{n} P(X_i > x),\tag{1}$$

where $x^+ = \max\{x, 0\}$. There are quite a few ways to generalize these asymptotic relations. One way is to consider some broader classes of heavy-tailed distributions, see, e.g., Ng et al. (2002). Another way is to study the randomly stopped sums, see, e.g., Denisov et al. (2010). Allowing some dependence of X_i 's, similar results can be obtained for different classes of heavy-tailed distributions, see Wang and Tang (2004), Geluk and Ng (2006), Tang (2008), Geluk and Tang (2009), and references therein.

A more general way is to work on the weighted sums of form $\sum_{i=1}^{n} c_i X_i$, where weights c_i 's are real numbers. If X_i 's are i.i.d. subexponential random variables, Tang and Tsitsiashvili (2003) proved that for any $0 < a \le b < \infty$, the asymptotic relation

$$P\left(\sum_{i=1}^{n} c_i X_i > x\right) \sim \sum_{i=1}^{n} P(c_i X_i > x),\tag{2}$$

E-mail addresses: chenhua.zhang@usm.edu, zhangch001@yahoo.com.

holds uniformly for $a \le c_i \le b$, $1 \le i \le n$, in the sense that

$$\lim_{x\to\infty} \sup_{a\le c_i\le b,\, 1\le i\le n} \left| \frac{P\left(\sum_{i=1}^n c_i X_i > x\right)}{\sum_{i=1}^n P(c_i X_i > x)} - 1 \right| = 0.$$

Recently, Liu et al. (2012) and Li (2013) established the same asymptotic relation for some dependent X_i 's. Chen et al. (2011) showed that for any fixed $0 < a \le b < \infty$ it holds that uniformly for $a \le c_i \le b$, $1 \le i \le n$,

$$P\left(\sum_{i=1}^{n} c_i X_i > x\right) \sim P\left(\max_{1 \le k \le n} \sum_{i=1}^{k} c_i X_i > x\right) \sim P\left(\sum_{i=1}^{n} c_i X_i^+ > x\right),\tag{3}$$

where X_i 's are independent, not necessarily identically distributed, random variables with long-tailed distributions. This result is extended by substituting b with any positive function b(x) such that $h(x) \nearrow \infty$ and b(x) = o(x) in this paper.

Replacing the constant weights c_i 's with random weights θ_i 's, the asymptotic relations (2) and (3) still hold if the weights θ_i 's, independent of X_i 's, are uniformly bounded away from zero and infinity. Then it is very natural to consider the randomly weighted sum of form $\sum_{i=1}^n \theta_i X_i$. Wang and Tang (2006) obtained $P\left(\sum_{i=1}^n \theta_i X_i > x\right) \sim P\left(\max_{1 \le k \le n} \sum_{i=1}^k \theta_i X_i > x\right) \sim P\left(\sum_{i=1}^n \theta_i X_i^+ > x\right)$ for the case that the random weights are not necessarily bounded and X_i 's are independently random variables with common distribution belonging to a smaller class than the class of subexponential distributions. Furthermore, Zhang et al. (2009), Chen and Yuen (2009) established the same results for dependent X_i 's, where the dependence structures of X_i 's are essentially same for proof of their results.

The rest of this paper is organized as follows. Section 2 reviews some important classes of heavy-tailed distributions. Section 3 introduces the family of uniformly long-tailed distributions. Section 4 states the main results along with some corollaries. Section 5 gives an application of the main results to the ruin probability in a discrete-time insurance risk model. The proof of the main results and some lemmas are presented in Section 6.

2. Classes of heavy-tailed distributions

A random variable X or its distribution F is said to be heavy-tailed to the right or have a heavy (right) tail if the corresponding moment generate function does not exist on the positive real line, i.e., $Ee^{tX} = \int_{-\infty}^{\infty} e^{tx} dF(x) = \infty$ for any t > 0. The most important class of heavy-tailed distributions is the class of subexponential distributions, denoted by \mathcal{S} . Write the tail distribution by $\overline{F}(x) = 1 - F(x)$ for any distribution F. Let F^{*n} denote the n-fold convolution of F. A distribution F concentrated on $[0,\infty)$ is subexponential if

$$\overline{F^{*n}}(x) \sim n\overline{F}(x)$$

for some or, equivalently, for all $n \ge 2$. More generally, a distribution F on $(-\infty, \infty)$ belongs to the subexponential class if $F^+(x) = F(x)I_{(x>0)}$ does.

Closely related to the subexponential class \mathcal{S} , the class \mathcal{D} of dominated varying distributions consists of distributions satisfying

$$\limsup_{x\to\infty}\frac{\overline{F}(yx)}{\overline{F}(x)}<\infty$$

for some or, equivalently, for all 0 < y < 1. A slightly smaller class of \mathcal{D} is the class of distributions with consistently varying tail, denoted by \mathcal{C} . Say that a distribution F belongs to the class \mathcal{C} if

$$\lim_{y\searrow 1} \liminf_{x\to\infty} \frac{\overline{F}(yx)}{\overline{F}(x)} = 1 \quad \text{or, equivalently,} \quad \lim_{y\nearrow 1} \limsup_{x\to\infty} \frac{\overline{F}(yx)}{\overline{F}(x)} = 1.$$

A distribution F belongs to the class \mathcal{L} of long-tailed distributions if

$$\lim_{x \to \infty} \frac{\overline{F}(x+y)}{\overline{F}(x)} = 1$$

for some or, equivalently, for all y. A tail distribution \overline{F} is called h-insensitive if $\overline{F}(x+y) \sim \overline{F}(x)$ holds uniformly for all $|y| \le h(x)$, where h(x) is a positive nondecreasing function and $\lim_{x\to\infty} h(x) = \infty$. The concept of h-insensitive function is extensively used in the monograph of Foss et al. (2011). For any distribution $F \in \mathcal{L}$, it can be shown that \overline{F} is h-insensitive for some positive nondecreasing function $h(x) := h_F(x)$ such that $h(x) \nearrow \infty$ and h(x) = o(x), see, e.g., Lemma 6.1 in Section 6, Section 2 in Foss and Zachary (2003), Lemma 4.1 of Li et al. (2010). Consequently, \overline{F} is ch-insensitive for any fixed positive real number c.

It is well-known that the proper inclusion relations

$$C \subset \mathcal{D} \cap \mathcal{L} \subset \mathcal{S} \subset \mathcal{L}$$

hold, see, e.g., Embrechts et al. (1997) and Foss et al. (2011).

Download English Version:

https://daneshyari.com/en/article/1151740

Download Persian Version:

https://daneshyari.com/article/1151740

<u>Daneshyari.com</u>