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a b s t r a c t

In the study of complex organisms, clarifying the association between the evolution of
coding genes and the measures of functional variables is of fundamental importance.
However, traditional analysis of the evolutionary rate is either built on the assumption of
independence between responses or fails to handle a mixture distribution problem. In this
paper, we utilize the concept of generalized estimating equations to propose an estimating
equation to accommodate continuous and binary probability distributions. The proposed
estimate can be shown to have consistency and asymptotic normality. Simulations and data
analysis are also presented to illustrate the proposed method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In complex organisms, important biological features are usually influenced by multiple factors. One good example is
the evolution of coding genes. Clarifying the determinants of coding sequence evolution is of fundamental importance to
research on genome evolution and molecular biology. However, one complexity of such biological studies is the existence
of ‘‘subunits’’. For instance, the expression levels and patterns should be similar between complete genes and their
component exons, but may differ by log scales between different genes (and their exons). In other words, when dealing
with this biological property (expression level), we can group ‘‘exons’’ into larger units (i.e., ‘‘genes’’). One additional layer
of complexity in such analyses comes from the inter-correlations between the involved factors. Examples include the
association between subcellular localization of a protein and its topological feature in the protein interaction network. New
methodologies are thus required to address this high level of complexity in biological analysis.

The purpose of this paper is to develop a statistical method to find significant associations between the evolution of
coding exons (such as dN ; nonsynonymous nucleotide substitution rate) and the measures of functional variables. The
properties of the data add complexity. First, the dependent variable dN is correlated with one another for exons of the
same gene. Second, some of the biological features are also correlated with one another for exons of the same gene. Third,
the analysis includes both categorical and continuous variables, with the latter varying by several log scales. One traditional
approach to analyzing such data is first to use principal component analysis (PCA) to group the functional variables, and
then to use regression analysis to model the evolutionary rate by grouped variables. This estimation process is referred to
as a PCR analysis (e.g. Chen et al., 2012). However, we note that PCR analysis is built on an independence assumption for
the responses. Because the (observed) evolutionary rates among the same gene may have their own correlation structure
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different from that of functional variables, PCR analysis of this may lead tomisleading statistical inference. Another problem
is that PCR analysismay have difficulty dealingwith non-normal data, particularlywhen the data set has a certain proportion
of zero values. Other approaches to systematically examining the contributions of these inter-correlated factors to the
evolutionary rate – including multiple regression (Jovelin and Phillips, 2009), partial correlation (Liao et al., 2006) and
probabilistic modeling (Xia et al., 2009) – have similar limitations.

On the other hand, the generalized estimating equation (GEE), which was developed for longitudinal data, can be used to
analyze the relationship between the evolutionary rate and functional variables. Since the evolutionary rates are correlated
within a specific gene but are independent of other genes, such a data set with block correlations can suitably fit the GEE
assumption. However, the traditional GEE is to assume that the responses are from the same exponential family distribution.
When analyzing the evolutionary data, we find that the evolutionary rate, such as dN , may follow a mixture distribution
function since some of the responses are zeros and the others are positive values in an interval. As mentioned by Olsen
and Schafer (2001), using the traditional generalized estimating equation would be infeasible to recognize the qualitative
distinctions between zero and non-zero responses.

To address the above issues, wemodified the GEE concept to accommodate two probability functions via a latent process.
In Section 2, we introduce the mixture model and how to construct an estimating equation based on the concept of GEEs
for this model. To select the variables, we rely on the quasi-deviance (QDEV) function by Lin (2011). A simulation study for
the proposed method is given in Section 3. In Section 4, we use a data set concerning the difference of evolutionary rates
between human and mouse to illustrate the proposed method. Some discussions are presented in Section 5.

2. Estimation methods

2.1. Standard generalized estimating equations

Let Yi,j be the jth observation in the ith cluster with the expectation θi,j = E(Yi,j), i = 1, . . . , K , j = 1, . . . , ni. In the
evolutionary data, a single gene with ni observed exons is regarded as a cluster; thus, the total number of observations is
N =

K
i=1 ni. Let xi,j = (xi,j,0, xi,j,1, . . . , xi,j,q)t be a vector of explanatory variables associated with Yi,j, where xi,j,0 ≡ 0 and

notation t denotes the transpose of amatrix. Assume that themarginal distribution Fi,j of Yi,j belongs to an exponential family
distribution. To fit a model for Yi,j by xi,j, we consider a generalized linear model θi,j = g(xti,jβ), where β = (β0, β1, . . . , βq)

′

is a Rq+1 vector of regression parameters associated with explanatory variables and g(·) is a link function.
We now define some notations. Let Yi = (Yi,1, . . . , Yi,ni)

t and Y = (Y t
1, . . . , Y

t
K )t denote the responses in the ith cluster

and the whole data, respectively. Also, we define θi = E(Yi) and Vi = var(Yi) as the expectation and variance–covariance
matrices of Yi, respectively. Let corr(Yi,j, Yi′,j′) be the correlation between Yi,j and Yi′,j′ . In the cluster data, we assume that
corr(Yi,j, Yi′,j′) = ρ i

j,j′ for i = i′ and corr(Yi,j, Yi′,j′) = 0 for i ≠ i′. Let V = var(Y ). Then, in the cluster data, we have
V = diag(V1, . . . ,VK ), where diag denotes a block-diagonal matrix with diagonal elements V1, . . . ,VK .

To analyze the cluster data, a useful tool is to use the generalized estimating equation (Liang and Zeger, 1986)

K
i=1

Dt
iV

−1
i {Yi − θi}


β=β̂g

= 0, (2.1)

where Di = ∂θi/∂β is a derivative matrix of θi with respect to β. The estimate β̂g is called a GEE estimate. Let Si(β) =

Dt
iV

−1
i {Yi −θi(β)} and I0(β) =

K
i=1 D

t
iV

−1
i Di. When the link function g(·) is non-linear, we usually use a Newton–Raphson

iteration, β̂
(l+1)
g = β̂

(l)
g + I−1

0 {β̂
(l)
g }Si{β̂

(l)
g }, to get an approximation for β̂g , where (l) denotes the lth iteration.

2.2. Generalized estimating equations for mixture distributions

In practice, the evolutionary rate may have a large proportion of zero values. That is, the distribution function can be
written as dFi,j = {P(Yi,j = 0)}I[yi,j=0]


{1 − P(Yi,j = 0)}f (yi,j)

I[yi,j>0]
dτdµ, where f (·) is a probability density function of

continuous randomvariables, andµ and τ are Lebesgue and countingmeasures, respectively. Since the distribution function
Fi,j does not belong to the exponential family distribution, the traditional GEE framework (2.1)may not work for themixture
case.

In addition, in analysis of the evolutionary data, we often find that a positive value of Yi,j seems to follow a normal
distribution after taking a log-transformation. To fit a model satisfying this pattern and a mixture distribution, we assume
that a latent Gaussian process ϵi,j with mean zero, variance σ 2, and correlation ρ i

j,j′ exists. Given ϵi,j, the response Yi,j is
independently generated by

Yi,j =


0, if h(xti,jβ + ϵi,j) ≥ k0,
exp(xti,jβ + ϵi,j), if h(xti,jβ + ϵi,j) < k0,

(2.2)
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