

Contents lists available at ScienceDirect

Statistical Methodology

journal homepage: www.elsevier.com/locate/stamet

Some properties of stochastic volatility model that are induced by its volatility sequence

M. Rezapour^{a,*}, N. Balakrishnan^{b,c}

^a Department of Statistics, Shahid Bahonar University of Kerman, Kerman, Iran

^b Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada

^c Department of Statistics, King Abdulaziz University, Jeddah, Saudi Arabia

ARTICLE INFO

Article history: Received 18 September 2013 Received in revised form 15 November 2014 Accepted 17 November 2014 Available online 12 December 2014

Keywords: Point process Vague convergence Multivariate regular variation Mixing condition Stationary process Heavy tail Exponential AR(2) process Finance Stochastic volatility

1. Introduction

The stochastic volatility model

$$X_t = \sigma_t Z_t, \quad t \in \mathbb{Z},$$

(1.1)

has attracted considerable attention in the financial time series literature. Here, the *volatility sequence* (σ_t) is (strictly) stationary and consists of non-negative random variables independent of the i.i.d. sequence (Z_t). We refer to [1] for a recent overview of the theory of stochastic volatility models. The

http://dx.doi.org/10.1016/j.stamet.2014.11.002

1572-3127/© 2014 Elsevier B.V. All rights reserved.

ABSTRACT

In this paper, we consider a heavy-tailed stochastic volatility model $X_t = \sigma_t Z_t$, $t \in \mathbb{Z}$, where the volatility sequence (σ_t) and the iid noise sequence (Z_t) are assumed to be independent, (σ_t) is regularly varying with index $\alpha > 0$, and the Z_t 's to have moments of order less than $\alpha/2$. Here, we prove that, under certain conditions, the stochastic volatility model inherits the anti-clustering condition of (X_t) from the volatility sequence (σ_t) . Next, we consider a stochastic volatility model in which (σ_t) is an exponential AR(2) process with regularly varying marginals and show that this model satisfies the regular variation, mixing and anti-clustering conditions in Davis and Hsing (1995).

© 2014 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail addresses: mohsenrzp@gmail.com (M. Rezapour), bala@mcmaster.ca (N. Balakrishnan).

popular GARCH model has the same structure as in (1.1), but every Z_t feeds into the future volatilities σ_{t+k} , $k \ge 1$, and so (σ_t) and (Z_t) are dependent in this case. However, neither σ_t nor Z_t are directly observable, and therefore it depends on whether one prefers a stochastic volatility, a GARCH or any other model for returns.

In this paper, we consider stochastic volatility models in which σ_t is a strictly stationary regularly varying random sequence. A strictly stationary sequence (X_t) is said to be regularly varying with index $\alpha > 0$ if for every $d \ge 1$, the vector $\mathbf{X}_d = (X_1, \ldots, X_d)'$ is regularly varying with index $\alpha > 0$. This means that there exists a sequence (a_n) with $a_n \to \infty$ and a sequence of non-null Radon measures (μ_d) on the Borel σ -field of $\overline{\mathbb{R}}_0^d = \overline{\mathbb{R}}^d \setminus \{0\}$ such that for every $d \ge 1$,

$$n P(a_n^{-1}\mathbf{X}_d \in \cdot) \xrightarrow{v} \mu_d(\cdot),$$

where $\stackrel{v}{\rightarrow}$ denotes vague convergence and μ_d satisfies the scaling property $\mu(t \cdot) = t^{-\alpha} \mu(\cdot), t > 0$. The latter property justifies the name "regular variation with index $\alpha > 0$ ". The sequence (a_n) can be chosen such that $nP(|X_1| > a_n) \rightarrow 1$. We refer to [9,10] for more details on regular variation and vague convergence of measures. Assume that (X_t) is regularly varying with index $\alpha > 0$ and normalization (a_n) such that $P(|X| > a_n) \sim n^{-1}$, that the mixing condition $\mathcal{A}(a_n)$ (see [6]) is satisfied, and that the anti-clustering condition

$$\lim_{m \to \infty} \limsup_{n \to \infty} P(\max_{m \le |t| \le r_n} |X_t| > y \, a_n \mid |X_0| > y \, a_n) = 0, \quad y > 0,$$
(1.2)

holds. Here, (r_n) is an integer sequence such that $r_n \to \infty$, $r_n = o(n)$ which appears in the definition of $\mathcal{A}(a_n)$. Then, Davis and Hsing [4] have presented a rather general approach to the extremes of a strictly stationary sequence (X_t) . Mikosch and Rezapour [8] showed that the stochastic volatility model in (1.1) inherits the mixing condition $\mathcal{A}(a_n)$ and regularly varying property of (X_t) from the volatility sequence (σ_t) . Here, we will show that the anti-clustering condition of (X_t) can be obtained from the anti-clustering property of the volatility sequence (σ_t) under certain conditions. We also introduce a stochastic volatility model whose volatility is exponential AR(2) which is an extension of the exponential AR(1) described in [8]. We will then show that this model is a regularly varying random sequence and satisfies the mixing and anti-clustering conditions described above. Note that we can also define exponential AR(p) in a similar manner, but we cannot obtain a similar compact form (as obtained in Lemma 3.1) for exponential AR(p) with p > 2, and so we cannot show that this model also has the regular variation, mixing, and anti-clustering conditions. This remains as an open problem.

2. Regular variation of stochastic volatility model

In this section, we show that the stochastic volatility model in (1.1) inherits the anti-clustering property of (X_t) from the volatility sequence (σ_t).

Theorem 2.1. Consider the stochastic volatility model in (1.1) and assume that (σ_t) is strictly stationary and regularly varying with index α . Moreover, assume that (σ_t) satisfies the anti-clustering condition in (1.2), $r_n = o(n^C)$ for some positive constant C, and $nE(|Z|^p I_{|Z|>M^{-1}a_n}) = O(1)$ for some positive M and $p < \frac{\alpha}{2}$. Then, (X_t) satisfies the anti-clustering condition.

Proof. We have

$$P(\max_{m < |t| < r_n} |X_t| > a_n \mid |X_0| > a_n) \sim \frac{P(\max_{m < |t| < r_n} |Z_t|\sigma_t > a_n, |Z_0|\sigma_0 > a_n)}{P(\sigma > a_n)}.$$
(2.1)

Let

$$A = \{ \max_{m < |t| < r_n} |Z_t| \sigma_t > a_n, |Z_0| \sigma_0 > a_n \},\$$

$$B_1 = \{ \sigma_0 > Ma_n, \max_{m < |t| < r_n} \sigma_t > Ma_n \},\$$

$$B_2 = \{ \sigma_0 \le Ma_n, \max_{m < |t| < r_n} \sigma_t \le Ma_n \},\$$

Download English Version:

https://daneshyari.com/en/article/1151752

Download Persian Version:

https://daneshyari.com/article/1151752

Daneshyari.com