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a b s t r a c t

Bernstein polynomials have many interesting properties. In statis-
tics, they were mainly used to estimate density functions and
regression relationships. The main objective of this paper is to
promote further use of Bernstein polynomials in statistics. This in-
cludes (1) providing a high-level approximation of the moments of
a continuous function g(X) of a random variable X , and (2) proving
Jensen’s inequality concerning a convex function without requiring
second differentiability of the function. The approximation in (1)
is demonstrated to be quite superior to the delta method, which is
used to approximate the variance of g(X) with the added assump-
tion of differentiability of the function. Two numerical examples
are given to illustrate the application of the proposed methodol-
ogy in (1).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Bernstein [3] demonstrated that the well-known Weierstrass approximation theorem (concerning
the uniform approximation of a continuous function by polynomials) could be easily derived by using
the law of large numbers. This led to the introduction of the so-called Bernstein polynomials, which later
becamewidely used inmany scientific and computer engineering applications. In statistics, Bernstein
polynomials were mainly used in estimating density functions, quantile functions, and regression
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relationships. In the area of density estimation, the statistical literature is very rich. Vitale [28]was the
first to use Bernstein polynomials to obtain smooth estimators for density functions on a closed inter-
val. Babu et al. [1] considered the application of Bernstein polynomials for approximating continuous
density functions. The authors also investigated the asymptotic properties of the resulting estimators
of these functions. A multivariate extension of this work was considered by Babu and Chaubey [2].
Turnbull and Ghosh [26] presented a unimodal density estimation method on the basis of Bernstein
polynomials. The density estimate was obtained using quadratic programming techniques to mini-
mize a scaled squared distance between the Bernstein distribution function estimate (constrained to
unimodality) and the empirical cumulative distribution function of the data. Leblanc [12] examined
the boundary properties of Bernstein estimators of density and distribution functions. Petrone [17]
presented the general framework for Bayesian nonparametric density estimation using a prior based
on Bernstein polynomials.

In the area of regression estimation, Stadtmüller [22] used Bernstein polynomials to approximate
an unknown regression function. Thismethodwas generalized by Tenbusch [24] to regressionmodels
with several predictors. Curtis and Ghosh [6] took a Bayesian approach to estimate a regression func-
tion using Bernstein polynomials. They established a connection between monotonic regression and
variable selection. Osman and Ghosh [16] presented a nonparametric regression model for the con-
ditional hazard rate using Bernstein polynomials. Wang and Ghosh [29] developed an estimator of
the regression function subject to various shape constraints. Their use of Bernstein polynomials made
it possible to obtain an estimator that could be adapted to accommodate shape constraints such as
nonnegativity, monotonicity, and convexity.

In this article, we present further applications of Bernstein polynomials which include the approxi-
mation ofmoments of functions of randomvariables, and the derivation of a proof of Jensen’s inequality
concerning a convex functionφ(X) of a randomvariableX . The proof does not require that the function
be twice differentiable. In the area of moment approximation, the proposed procedure is contrasted
with the delta methodwhich is used to approximate themean and variance of a differentiable function
of a random variable. The benefits of using Bernstein polynomials in the approximation of moments
are outlined in Section 2.2. Two examples are presented to demonstrate how to use these polynomials
to approximate the moments of a continuous function g(X) of a random variable X .

1.1. Bernstein polynomials

A Bernstein polynomial of degree n of a function g(t) defined on [0, 1] is given by
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Note that B∗
n(g; t) represents the expected value of g(n−1n

i=1 Yi), where Y1, Y2, . . . , Yn are
independent and identically distributed Bernoulli random variables with success probability t . Thus,n

i=1 Yi has the binomial distribution Bin(n, t). If the function g is defined on [a, b], then by making
the transformation t = (x − a)/(b − a), the corresponding Bernstein polynomial of the function
g(x), a ≤ x ≤ b, can be expressed as
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, a ≤ x ≤ b. (1.2)

The following theorems are known about Bernstein polynomials (see [14]; [7, Chapter 6]; [18,
Chapter 7]):

Theorem 1.1. If g(x) is continuous on [a, b], then for every ϵ > 0, there exists an integer N(ϵ) such that
|g(x) − Bn(g; x)| < ϵ for n ≥ N and for all x in [a, b].

Bernstein [3] noted that this well-known approximation theorem of Weierstrass could be easily
proved using the law of large numbers and the fact that B∗

n(g; t) in (1.1) is the expected value of
g(n−1n

i=1 Yi), as was mentioned earlier (see [13]).
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