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a b s t r a c t

Wepropose a nonparametric variance estimatorwhen ranked set sampling (RSS) and judg-
ment post stratification (JPS) are applied by measuring a concomitant variable. Our pro-
posed estimator is obtained by conditioning on observed concomitant values and using
nonparametric kernel regression.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ranked set sampling (RSS), proposed byMcIntyre (1952, 2005), is a sampling strategy which uses ranking information to
give more efficient statistical inference than simple random sampling (SRS). To collect a balanced ranked set sample using
set size k, one first draws a sample of size k2 and then divides it into k samples of size k and ranks them in an increasing
magnitude (without actually measuring them, i.e., by eye inspection or using a concomitant variable). One then selects for
measurement the observation with rank r from the rth sample, for r = 1, . . . , k. This process is repeated n times in order
to obtain a sample of measured units of size N = nk. Therefore, a balanced ranked set sample consists of n independent
measured units with judgment rank one, n independent measured units with judgment rank two, and so on. An unbalanced
ranked set sample differs from the balanced one by the number of measured units with rank r not necessarily being the
same for all ranks. In fact, if nr is the number of observations with rank r , then N =

k
r=1 nr is the total sample size.

Another variation of RSS, proposed by MacEachern et al. (2004), is judgment post stratification (JPS). To collect a JPS
sample of size N , using set size k, one first draws a simple random sample of size N and measures all N units. Then, for
each measured unit, one draws a supplemental random sample of size (k − 1) from the population and finds the rank of
the measured unit when it is added to this sample. Therefore, a JPS sample of size N consists of a simple random sample
of size N and their corresponding ranks. The similarity of JPS sampling scheme and unbalanced RSS is that the number
of units with rank r (nr ) is not constant. However, JPS differs from unbalanced RSS by the fact that the nr ’s are not fixed
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in advance. In fact, if (n1, n2, . . . , nk) is the vector of the numbers of units with rank i, then one can simply show that
(n1, n2, . . . , nk) ∼ Multinomial (N, (1/k, 1/k, . . . , 1/k)).

A lot of researchhas beendoneonRSS and JPS since their introductions. In theRSS scheme, Takahasi andWakimoto (1968)
were the first who proved that themean estimator from RSS ismore efficient than that from SRS. Stokes (1980), MacEachern
et al. (2002) and Perron and Sinha (2004) proposed different variance estimators. The problem of estimating a distribution
function has been considered by Stokes and Sager (1988), Kvam and Samaniego (1994) and Duembgen and Zamanzade
(2013). Frey et al. (2007) and Li and Balakrishnan (2008) proposed some tests for assessing the assumption of prefect rank-
ings, followedbyVock andBalakrishnan (2011), Zamanzade et al. (2012), Frey andWang (2013), and Zamanzade et al. (2014).

In the JPS sampling scheme, Wang et al. (2008) and Frey and Feeman (2012) proposed some mean estimators. The
problem of estimating the population variance has been considered by Frey and Feeman (2013). Frey and Ozturk (2011)
and Wang et al. (2012) proposed some distribution function estimators.

Frey (2011) proposed some mean estimators in RSS and JPS based on measuring a concomitant variable, showing how
the values of the concomitant variable can be usedmore efficiently than just for ranking. A good review on existing literature
on RSS and its variations is given by Wolfe (2012).

The rest of this paper is organized as follows: in Section 2, we propose a nonparametric variance estimator for ranked
set samples and judgment post stratification based on a concomitant variable. Then, in Section 3, we compare the proposed
estimator with its leading competitors in the literature. Some concluding remarks are provided in Section 4.

2. Introduction of the variance estimator

In this section, we introduce a new variance estimator for ranked set samples and judgment post stratified data in the
case that the ranking is based on the measurement of a concomitant variable. Let Y , X be the variable of interest and the
concomitant variable, respectively, let X = {X1, X2, . . . , XkN} be the full set of X values which is used in rankings, and let
Xm

(1) < Xm
(2) < · · · < Xm

(N) be the X values corresponding to the measured units (Xm
(i) to Yi).

The concomitant variable information can be incorporated into the estimation of the population variance by using the
identity Var (Y ) = E
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(l = 1, 2) can be used for the estimation

of E

Y l
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(l = 1, 2), and the estimates based on this conditioning are expected to have less variance than direct estimates.
The parameters E
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µl

X


(l = 1, 2) can be estimated by taking the average over the kN estimates of E


Y l
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
, i =

1, 2, . . . , kN, l = 1, 2. We propose to estimate the quantities E

Y l

| X = x


(l = 1, 2) by using nonparametric kernel
regression. Let k (.) be a kernel function and h > 0 the bandwidth, then these quantities can be estimated using theweighted
average:
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We use the standard normal density function as the kernel function, and since we want to use the regression equation
for prediction, we propose to select the value for the bandwidth based on the cross-validation (CV) method. I.e., we select

the value of the bandwidth (hl) to minimize CV (hl) =
1
N

N
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, where m−i (x, hl) is the estimate of

the regression equation without using the observation

Y l
i , X

m
(i)


(i = 1, 2, . . . ,N). Therefore, we can consider the value of

hcv
l (l = 1, 2) that is selected by the CVmethod as the best ‘‘predictive’’ estimate for hl (l = 1, 2). So, we propose to estimate

the population variance when RSS and JPS are applied by using a concomitant variable by
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Remark 1. It can be shown (see for example Takezawa, 2006, p. 117) that CV (hl) can be computed efficiently by using the

relation CV (hl) =
1
N

N
i=1


Y l
i −m(Xi,hl)

1−H
hl
ii

2

, where the Hhl
ii ’s are the diagonal members of the hat matrix. In the simulation

study in the next section, hl is selected from a sequence of values in the interval [N−
1
4 /3, 3N−

1
4 ] with steps of 0.01, where

N−
1
4 is the bandwidth that is used by Frey (2011).

3. Monte Carlo comparisons

In this section, we compare the proposed estimator with its leading competitors in RSS and JPS settings. For this purpose,
we use the imperfect ranking model proposed by Dell and Clutter (1972), assuming (Y , X) follows a standard bivariate nor-
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