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a b s t r a c t

In this paper the ridge regression (RR) diagnostic method of Walker and Brich (1988) is
applied to the ridge semiparametric regression model (RSPRM). We propose case deletion
formulas to detect influential points. Furthermore, a real data set is analysed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Diagnostic techniques for the parametric regression model have received a great deal of attention in statistical literature
since the seminal work of Cook (1977) and others including Cook andWeisberg (1982), Belsley et al. (1989) andWalker and
Birch (1988). In semiparametric regression models (SPRMs), diagnostic results are quite rare; among them Eubank (1985),
Thomas (1991) and Kim (1996) studied the basic diagnostic building blocks such as residuals and leverages, Kim et al. (2001,
2002) and Fung et al. (2002) proposed some type of Cook’s distances in SPRMs.

It is not unusual to have influential cases and multicollinearity simultaneously in SPRMs. Frequently, the existence of
influential observations is complicated by the presence of collinearity. However, there does not seem to be work on the pos-
sible effects that collinearity can have on the influence of an observation in SPRMs. In this paper, we therefore propose a case
deletion formula to detect influential points in the ridge penalized least squares estimators (RPLSEs) of SPRM.We assess the
global influence of observations on the RPLSEs using the method of case deletion suggested byWalker and Birch (1988). We
also graphically show how the influence of a case can be modified when RPLSEs are used to reduce the level of collinearity.
The paper is organized as follows. In the next section, SPRMs are introduced, the relevant notations and some inferential
results are also given. In Section 3, the RPLSEs are defined based on the partial spline models. Section 4 derives some type of
Cook’s distance and case-deletion formulas for the RPLSEs. Statistical properties and motivation of these measures are also
discussed. In Section 5 the proposedmethods are illustrated through a real data set. A discussion is given in the last section.

2. Background and definition

Consider the SPRM given by

yi = x′

iβ + g(ti) + ϵi 1 ≤ i ≤ n, (1)
whereβ is a p-vector of regression coefficients, xi is a p-vector of explanatory variables, ti is a scalar (a ≤ t1, . . . , tn ≤ b), and
t ′i s are not all identical, g is a smooth function and the errors ϵi are uncorrelated with zero mean and constant variance σ 2.

E-mail address: h.emami@znu.ac.ir.

http://dx.doi.org/10.1016/j.spl.2015.06.010
0167-7152/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2015.06.010
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2015.06.010&domain=pdf
mailto:h.emami@znu.ac.ir
http://dx.doi.org/10.1016/j.spl.2015.06.010


H. Emami / Statistics and Probability Letters 105 (2015) 106–113 107

Model (1) has been used in discussion of many methods, e.g., penalized least squares (see Fung et al., 2002) and smoothing
spline (see Green and Silverman, 1994). There are several ways of estimating β and g . Here the penalized least squares
approach is of special interest. For this, let the ordered distinct values among t1, . . . , tn be denoted by s1, . . . , sq. The
connection between t1, . . . , tn and s1, . . . , sq is captured by means of n × q incidence matrix N , with entries Nij = 1 if
ti = sj and 0 otherwise. Let g be the vector of value ai = g(si). For model (1) the penalized sum of squares is

∥y − Xβ − Ng∥2
+ λ


g ′′(t)2dt, (2)

where y is the vector of n response values and X is n × p design matrix. Minimizing (2) with respect to β and g , the partial
spline least squares estimators (PLSEs) of β and g are

β̂ = {X ′(In − S)X}
−1X ′(In − S)y (3)

and

ĝ = (N ′N + λM)−1N ′(y − X β̂), (4)
where In is the identity matrix of size n, S = N(N ′N +λM)−1N ′, λ is a nonnegative tuning parameter andM is a q×qmatrix
whose entries only depend on the knots {sj} (see Speckman, 1988 and Nishisato et al., 2002).

3. Partial spline models and ridge estimation

The procedure of fitting the model (1), essentially involves estimating the parameters of the model by assuming that
rank(X) = p, or equivalently rank{X ′(In − S)X} = p. In fact, if X is an ill-conditioned matrix, then the results may not
fulfil our wishes, or can even be false in some situations, especially for small samples. There are a few studies that looked
at overcoming the rank-deficient and ill-conditioned or multicollinearity problems in SPRMs (see Hu, 2005, Duran et al.,
2012 and Roozbeh, 2015). Here, we use the RPLSEs which can be obtained by minimizing (2) subject to β ′β = d, where d is
constant. Particularly we should minimize

∥y − Xβ − Ng∥2
+ λ


g ′′(t)2dt − k(β ′β − d), (5)

where k is a Lagrangian multiplier. Minimization of (5) can be done in a two steps estimation process: first we minimize it
subject to g(sj) = aj, j = 1, . . . , q and in the second step weminimize the result over the choice of g and β . The problem of
minimizing


g ′′(t)2dt subject to g interpolating given points g(sj) = aj is given by Green and Silverman (1994), and mini-

mizing function g provides a cubic spline with knots {sj}. There exists a matrixM only depending on the knots {sj}, such that
the minimized value of


g ′′(t)2dt is g ′Mg (cf. Green and Silverman, 1994, p. 66). The equation in (5) is therefore of the form

∥y − Xβ − Ng∥2
+ λg ′Mg − k(β ′β − d). (6)

Now, by minimizing (6) the RPLSEs of β and g are obtained as

β̂k = {X ′(In − S)X + kIp}−1X ′(In − S)y (7)
and

ĝ = (N ′N + λM)−1N ′(y − X β̂k), (8)
where Ip is identity matrix of size p. In this paper, the choice of the smoothing parameter λ is accomplished by minimizing
the generalized cross-validation criterion GCV (λ). In the literature k has been referred as ridge parameter. It is obvious that
for k equal to zero, the RPLSEs defined in (7) and (8) are exactly the same as PLSEs of β and g defined in (3) and (4). The
choice of this parameter in ordinary least squares is still unsolved and because of this problem several approaches have
been developed to guide data analysts in the selection of shrinkage parameter (see Walker and Birch, 1988). A common ap-
proach suggests plotting schememean squared error on element of ridge estimator versus different values of k and choosing
the best value for k. Here we follow the method of Hu (2005) to choose the balance parameter k. At first, we choose some
{kl, l = 1, 2, . . . , h} such that rank{X ′(In − S)X + kIp} = p, and then we find a kl0 from {kl, l = 1, 2, . . . , h} such that kl0
minimizes the term in (2).

4. Influence diagnostic in RPLSE

4.1. Leverage and residuals

From (7) and (8) the vector of fitted values can be written as

ŷ = X β̂(k) + Nĝ

= (H̃k + H∗

k )y
= Hky,
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