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a b s t r a c t

Likelihood-based inference for both singly and multiply imputed synthetic data is devel-
oped in this paper under a univariate normal model and two distinct data generation sce-
narios, namely, posterior predictive sampling and plug-in sampling. We show that valid
and exact inference can be drawn in both scenarios. Some theoretical issues of multiply
imputed datasets under posterior predictive sampling are also pointed out.

Published by Elsevier B.V.

1. Introduction

To protect privacy and confidentiality of survey respondents, it is a standard practice of statistical agencies to use
statistical disclosure control methodology. For magnitude microdata one popular method is to create multiple synthetic
datasets based on a parametric model and apply suitable combination rules to draw inference about population parameters
(Rubin, 1987, 1993; Raghunathan et al., 2003; Reiter, 2003; Reiter and Kinney, 2012; Drechsler, 2011).

There are two standard methods of generation of synthetic data. Assuming that the original data x are generated under
a probability model fθ , θ being the unknown parameter, under Case 1: Posterior Predictive Sampling, a prior for θ is assumed
and converted to the posterior distribution, which is then used to draw independent replications θ∗

1, . . . , θ
∗

m (known as
posterior draws). Then for each such posterior draw θ∗

i of θ, a corresponding replicate of x is generated from fθ∗i , resulting
in multiply imputed synthetic data which are released to the public. Inference about a parameter of interest based on the
multiply imputed synthetic data can be drawn following the (asymptotically valid) combination rules suggested by Reiter
(2003). Under Case 2: Plug-in Sampling, a point estimator θ̂(x) of θ is plugged into the joint probability density function (pdf)
of x, resulting in f

θ̂(x), which is used to generate synthetic data of any size. Here again the combination rules of Reiter (2003)
can be used (see Reiter and Kinney, 2012).

The motivations for this current research are twofold. First, although synthetic data methodology calls for releasing
multiple synthetic versions of the original data, there are situations where this is not feasible, perhaps due to severe privacy
concerns (see Kinney et al., 2011 for an example). Second, since synthetic data generation is indeed model-based, one
wonders if rigorous model-based finite sample inference can be developed. We demonstrate in this paper that, under a
normal model, it is indeed possible to draw valid inference based on just one synthetic dataset!
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In Section 2we consider Case 1withm = 1, allowing a general form of the priorπ(θ), involving a hyperparameter α, and
making some recommendations about its choice. In Section 3 we deal with Case 2. Our comparison of the two approaches of
synthetic data generation reveals some very interesting features. The entire treatment is non-asymptotic in nature. We also
discuss Case 1 with m > 1 in Section 4 and point out some subtle theoretical issues. Section 5 presents numerical results
to evaluate the performance of the proposed methods, and to compare the performance of Cases 1 and 2. We complete the
paper with some concluding remarks in Section 6. Throughout we assume that the original data x = (x1, . . . , xn) are such
that x1, . . . , xn ∼ i.i.d. ∼ N(θ, σ 2) with −∞ < θ < ∞ and 0 < σ 2 < ∞. Let x̄ =

1
n

n
i=1 xi, S2

x =
n

i=1(xi − x̄)2, and
s2x = S2

x/(n − 1).

2. Inference under posterior predictive sampling

Assume a joint prior π(θ, σ 2) ∝
1
σα

and n + α > 7 for valid inference about θ and σ 2.

Step 1. Draw (σ ∗)2 such that S2x
(σ∗)2

∼ χ2
n+α−3, then draw θ∗

∼ N

x̄, (σ

∗)2

n


.

Step 2. Draw z = (z1, . . . , zn) as i.i.d. from N

θ∗, (σ ∗)2


.

Write z̄ =
n

i=1 zi/n, S
2
z =

n
i=1(zi − z̄)2, and s2z = S2

z/(n − 1). It is easy to verify that z̄ and S2
z are jointly sufficient for

(θ, σ 2). Here are the main inferential results.

1. The maximum likelihood estimator (MLE) of θ is z̄, which is unbiased for θ with Var(z̄) =
2σ 2

n +
(n−α+3)σ 2

n(n+α−5) .

2. An unbiased estimator of σ 2 is σ̂ 2
U(z) =

(n+α−5)
(n−1)2

S2
z , since E(S

2
z ) = (n−1)E[(σ ∗)2] =

(n−1)2σ 2

n+α−5 . Furthermore, Var(σ̂ 2
U(z)) =

(n+1)2(n+α−5)
(n+α−7)(n−1)2

− 1

σ 4. Observe that only the choice α = 4 yields the usual unbiased estimator S2

z/(n − 1), pointing out
the fact that one cannot ignore the importance of the choice of α.

3. The MLE of σ 2 is σ̂ 2
MLE(z) =

S2z
ψn

, with its mean squared error (MSE) as MSE

σ̂ 2
MLE(z)


= E


S2z
ψn

− σ 2
2

=

E

(n2

− 1) (σ
∗)4

ψ2
n

− 2σ 2 S2z
ψn

+ σ 4


= σ 4
[

(n2−1)2

(n+α−5)(n+α−7)ψ2
n

− 2 (n−1)2

(n+α−5)ψn
+ 1] where ψn is the value of ψ that maximizes

the expression Q1(ψ) = ψ
n
2


∞

0 e−
u
2 un+ α−3

2 −1 1√
ψ+

u
2
[ψ + u]−

2n+α
2 +2du. In the MSE computation above we have used

the facts that (σ ∗)2|S2
x ∼

S2x
χ2
n+α−3

and S2x
σ 2 ∼ χ2

n−1.

4. A two-sided shortest length (1 − γ ) level confidence interval for σ 2 based on z is
S2
z

dn,α
,

S2
z

cn,α


, (1)

where the constants cn,α and dn,α satisfy
 dn,α
cn,α

fn,α(v)dv = 1 − γ , c2n,α fn,α(cn,α) = d2n,α fn,α(dn,α), and fn,α(v) is the pdf

of V = S2
z/σ

2 given below in Theorem 2.2. The length of the confidence interval is Lσ 2(z) = S2
z [

1
cn,α

−
1

dn,α
], and the

expected length is E[Lσ 2(z)] = σ 2


1
cn,α

−
1

dn,α


×


(n−1)2

n+α−5


.

5. A two-sided shortest length (1 − γ ) level confidence interval for θ based on z is
z̄ −

bn,α
[n(n − 1)]1/2

Sz, z̄ +
bn,α

[n(n − 1)]1/2
Sz


, (2)

where the constant bn,α satisfies 1 − γ = 2 Pr[0 < t < bn,α], and the pdf of t =
√
n(z̄ − θ)/sz is given below

in Theorem 2.3. The length of the confidence interval is Lθ (z) =
2bn,α

[n(n−1)]1/2
Sz , and the expected length is E[Lθ (z)] =

2σbn,α
[n(n−1)]1/2

× E[{(χ2
n−1)

1/2
}]

2
× E[{(χ2

n+α−3)
−1/2

}]. To compute the expected confidence interval length, we have used the
facts that E(Sz) = E(σ ∗)×[E{(χ2

n−1)
1/2

}], E(σ ∗) = E[(S2
x)

1/2
]×E[(χ2

n+α−3)
−1/2

], and finally E[(S2
x)

1/2
] = σE[(χ2

n−1)
1/2

].

The following theorems dealing with (1) the joint distribution of z̄ and S2
z , (2) the distribution of V = S2

z/σ
2 (for

confidence interval for σ 2), and (3) the distribution of t =
√
n(z̄−θ)/sz (for confidence interval for θ ), are used to derive the

above inferential results.We refer the reader to the Supplementarymaterials (see Appendix A) for the proofs of the theorems.

Theorem 2.1. The joint pdf of z̄ and S2
z is

fθ,σ 2(z̄, S2
z ) ∝


∞

0

exp

−

1
2


n(z̄−θ)2

σ 2+2(σ∗)2
+

S2z
(σ∗)2


(S2z )

n−1
2 −1

σ n


1

(σ∗)2

n+ α−3
2 −1


1
σ 2 +

1
2(σ∗)2

 1
2


1
σ 2 +

1
(σ∗)2

 2n+α
2 −2

d


1
(σ ∗)2


.
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