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a b s t r a c t

We introduce state-space models where the functionals of the
observational and evolutionary equations are unknown, and
treated as random functions evolving with time. Thus, our model
is nonparametric and generalizes the traditional parametric state-
spacemodels. This random function approach also frees us from the
restrictive assumption that the functional forms, although time-
dependent, are of fixed forms. The traditional approachof assuming
known, parametric functional forms is questionable, particularly
in state-space models, since the validation of the assumptions
require data on both the observed time series and the latent
states; however, data on the latter are not available in state-space
models.

We specify Gaussian processes as priors of the random func-
tions and exploit the ‘‘look-up table approach’’ of Bhattacharya
(2007) to efficiently handle the dynamic structure of the model.
We consider both univariate and multivariate situations, using the
Markov chain Monte Carlo (MCMC) approach for studying the pos-
terior distributions of interest.We illustrate ourmethodswith sim-
ulated data sets, in both univariate and multivariate situations.
Moreover, using our Gaussian process approach we analyze a real
data set, which has also been analyzed by Shumway & Stoffer
(1982) and Carlin, Polson & Stoffer (1992) using the linearity as-
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sumption. Interestingly, our analyses indicate that towards the end
of the time series, the linearity assumption is perhaps questionable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The state-space models play important role in dealing with dynamic systems that arise in various
disciplines such as finance, engineering, ecology,medicine, and statistics. The time-varying regression
structure and the flexibility inherent in the sequential nature of state-space models make them very
suitable for analysis andprediction of dynamic data. Indeed, as iswell-known,most time seriesmodels
of interest are expressible as state-space models; see [7,13] for details. However, till date, the state-
space models have considered only known forms of the equations, typically linear. But testing the
parametric assumptions require data on both the observed time series and the unobserved states;
unfortunately, data on the latter are not available in state-space models. Moreover, the regression
structures of the state-space models may evolve with time, changing from linear to non-linear,
and even the non-linear structure may also evolve with time, yielding further different non-linear
structures. We are not aware of any nonparametric state-space approach in the statistical literature
that can handle unknown functional forms, which may or may not be evolving with time. Another
criticism of the existing state space models is the assumption that the (unobserved) states satisfy the
Markov property. Although suchMarkovmodels have been useful in many situations where there are
natural laws supporting such conditional independence, in general such assumption is not expected
to hold. These arguments point towards the need for developing general, nonparametric, approaches
to state-space models, and this indeed, is our aim in this article. We adopt the Bayesian paradigm for
its inherent flexibility.

In a nutshell, in this work, adopting a nonparametric Bayesian framework, we treat the regression
structures as unknown and model these as Gaussian processes, and develop the consequent theory
in the Bayesian framework, considering both univariate and multivariate situations. Our Gaussian
process approach of viewing the unknown functional forms allows very flexible modeling of the
unknown structures, even though they might evolve with time. Also, as we discuss in Section 4.7,
as a consequence of our nonparametric approach, the unobserved state variables do not follow
any Markov model. Thus our approach provides a realistic dependence structure between the state
variables. We also develop efficient MCMC-basedmethods for simulating from the resulting posterior
distributions. We demonstrate our methods in the case of both univariate and multivariate situations
using simulated data. Application of our ideas to a real data set which has been analyzed by Shumway
and Stoffer [12] and Carlin et al. [3] assuming linearity, provided an interesting insight that, although
the linearity assumptionmaynot be unreasonable formost part of the time series, the assumptionmay
be called in question towards the end of the time series. This vindicates that our approach is indeed
capable of modeling unknown functions even if the forms are changing with time, without requiring
any change point analysis and specification of functional forms before and after change points.

Before introducing our approach, we provide a brief overview of state-space models.

2. Overview of state-space models

Generally, state-space models are of the following form: for t = 1, 2, . . . ,

yt = ft(xt) + ϵt (1)
xt = gt(xt−1) + ηt . (2)

In the above, ft and gt are assumed to be functions of known forms which may or may not explicitly
depend upon t; ηt , ϵt are usually assumed to be zeromean iid normal variates. The choice ft(xt) = Ftxt
and gt(xt−1) = Gtxt−1, assuming known Ft ,Gt , have found very wide use in the literature. Obviously,
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