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a b s t r a c t

We consider the problem of estimating the bispectrum of a locally stationary process. A
nonparametric, lag-window type estimator is considered and its asymptotic properties
are investigated. As a possible application, a test for linearity in the framework of locally
stationary processes is discussed.
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1. Introduction

Although the assumption of covariance-stationarity is extremely popular in the analysis of discrete time series (because
it allows for an elegant asymptotic theory), it is usually not justified in practice. In the reality most processes change their
second-order structure over time and one concept, which incorporates this feature, is that of locally stationary processes.
A triangular array {XT , T = 1, 2, . . .} of stochastic processes XT = {Xt,T , t = 1, 2, . . . , T } is called locally stationary if it
possesses a time varyingMA(∞)-representation

Xt,T =

∞
l=0

ψt,T ,lZt−l, t = 1, . . . , T , (1)

where the random variables Zt are assumed to be independent and identically distributed with mean 0 and variance 1. To
make the class XT of processes mathematically tractable, it is commonly assumed that Xt,T can be locally approximated by
a stationary process, that is that there exist functionsψl : [0, 1] → R such that the time varying coefficientsψt,T ,l are close
enough to some functions ψl(t/T ), i.e., that

∞
l=0

sup
t=1,...,T

|ψt,T ,l − ψl(t/T )| = O(1/T ). (2)
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The process

Xt(u) :=

∞
l=−∞

ψl(u)Zt−l

which is obtained by replacingψt,T ,l byψl(t/T ) is called the locally approximating stationary process, that is the stationary
process that approximates Xt,T locally at the rescaled time point t/T . The above class of stochastic processes was introduced
by Dahlhaus (1997) and became quite popular in recent years.

Consider now a locally stationary process as defined in (1) and assume that all moments of the innovations Zt exist and
that the locally approximating functions ψl : [0, 1] → R from (2) are twice continuously differentiable and satisfy the
following conditions,

∞
l=−∞

sup
u∈[0,1]

|ψl(u)| |l|2 < ∞, (3)

∞
l=−∞

sup
u∈[0,1]

|ψ ′

l (u)| |l| < ∞, (4)

∞
l=−∞

sup
u∈[0,1]

|ψ ′′

l (u)| < ∞. (5)

Then a time varying spectral density of XT exists, is unique and it is given by

f (u, λ) :=
1
2π

∞
l=−∞

E(Xt(u)Xt+l(u)) exp(−iλl), u ∈ [0, 1], λ ∈ R,

(see Dahlhaus, 1997). Notice that under the assumptions made

sup
t,λ

(2π)−1
|Ψt,T (e−iλ) |2 −f (u, λ)

 = O(T−1),

where for z ∈ C, Ψt,T (z) =


l ψt,T ,lz l. Similarly, we define the time varying bispectrum of the locally stationary process X
through

f (u, λ1, λ2) :=
1

(2π)2

∞
l1,l2=−∞

E(Xt(u)Xt+l1(u)Xt+l2(u)) exp(−i(λ1l1 + λ2l2)).

This definition is justified by the following, easily established property

sup
t,λ1,λ2

(2π)−2E(Z3
1 )Ψt,T (e−iλ1)Ψt,T (e−iλ2)Ψt,T (e−i(λ1+λ2))− f (u, λ1, λ2)

 = O(T−1).

In this notewe consider the problemof estimating the bispectrum f (u, λ1, λ2)based on anobserved time seriesX1,T , X2,T ,
. . . , XT ,T of the locally stationary process. For this, a lag-window estimator is considered and its asymptotic properties are
derived. As an application, a test of linearity is discussed.

2. A lag-window estimator and its properties

In order to estimate the bispectrum f (u, λ1, λ2), we choose a window length N such that N = o(T ) holds, and define an
estimator of the time-varying bispectrum through

f̂ (u, λ1, λ2) =
1

(2π)2

∞
k1,k2=−∞

w(k1/B, k2/B)γ̂N(u, k1, k2) exp(−iλ1,Nk1 − iλ2,Nk2), (6)

wherew : R2
→ R+

0 is a continuously differentiable function with compact support, λN = 2πN−1
⌊(2π)−1Nλ⌋ and

γ̂N(u, k1, k2) :=
1
N

N−1
p=0

X⌊uT⌋−N/2+1+pX⌊uT⌋−N/2+1+p+k1X⌊uT⌋−N/2+1+p+k2 ,

(we have set Xt,T = 0 for t ∉ {1, . . . , T }). We assume that N, B → ∞ and state the following assumptions on the weight
functionw.

Assumption 2.1. w(·, ·) has the compact support [0, 1]2 with w(0, 0) being equal to one, is twice continuously differen-
tiable, and the first derivatives vanish at the origin.
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