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a b s t r a c t

In this paper, we obtain sample path and scalar large deviation principles for the product of
sums of positive random variables. We study the case when the positive random variables
are independent and identically distributed and bounded away from zero or the left
tail decays to zero sufficiently fast. The explicit formula for the rate function of a scalar
large deviation principle is given in the case when random variables are exponentially
distributed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the limit theorems for the product of sums of random variables have generated a lot of interests in
the literature, e.g. Rempala and Wesolowski (2002), Gonchigdanzan and Rempala (2006), Zhang and Huang (2007), Miao
and Mu (2011) and many others. Let (Xi)

∞

i=1 be a sequence of independent and identically distributed (i.i.d.) positive
random variables with mean µ and variance σ 2. Let Sk =

k
i=1 Xi, k ∈ N. By strong law of large numbers and Cesàro

summation,
n

k=1

Sk
k

1/n

= e
1
n
n

k=1 log Sk
k → elogµ

= µ, a.s. (1.1)

as n → ∞. Rempala and Wesolowski (2002) proved the central limit theorem when Xi are i.i.d.,
n

k=1

Sk
kµ

µ/σ
√
n

→ e
√
2N(0,1), (1.2)

in distribution as n → ∞. Later, Gonchigdanzan and Rempala (2006) considered the central limit theorem for dependent
Xi and recently Zhang and Huang (2007) proved a functional central limit theorem and Strassen’s invariance principle. Miao
and Mu (2011) proved a moderate deviation principle when Xi are i.i.d. In this paper, we are interested to study the large
deviations. Before we proceed, recall that a sequence (Pn)n∈N of probability measures on a topological space X satisfies the
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large deviation principlewith the rate function I : X → R if I is non-negative, lower semicontinuous and for anymeasurable
set A, we have

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1
n
log Pn(A) ≤ lim sup

n→∞

1
n
log Pn(A) ≤ − inf

x∈A
I(x). (1.3)

Here, Ao is the interior of A and A is its closure. A rate function is said to be good if all the level sets {x : I(x) ≤ α} are
compact subsets of X . We refer to Dembo and Zeitouni (1998), Varadhan (1984) for general background of the theory and
the applications of large deviations.

2. Main results

Assume that (Xi)
∞

i=1 are i.i.d. positive random variables and E[eθX1 ] < ∞ for any θ ∈ R. Then, the Mogulskii theorem
says that 1

nS⌈nt⌉ satisfies a sample path large deviation on L∞[0, 1] with the good rate function

I(f ) =


 1

0
Λ(f ′(t))dt if f ∈ AC+

0 [0, 1]

+∞ otherwise,
(2.1)

where Λ(x) = supθ∈R{θx − logE[eθX1 ]}, AC+

0 [0, 1] is the set of increasing, absolutely continuous functions f (·) with
f (0) = 0 on [0, 1]. The statement and the proof of the Mogulskii theorem can be found in Dembo and Zeitouni (1998).
Since (

⌈nt⌉
k=1

Sk
k )1/n = e

1
n
⌈nt⌉

k=1 log(Sk/k), it is natural to use the contraction principle to prove a sample path large deviation
principle in our problem. Unfortunately, the contraction principle requires the continuity of a map from the space where a
large deviation principle holds to the space where you want to prove a large deviation principle but log(·) has a singularity
at 0+. We can simply bypass this problem by assuming that Xi is supported on [ϵ, ∞) as in Theorem 1. Now, if we want to
drop this assumption, then we need to assume that P(X1 ≤ ϵ) decays to zero fast enough as ϵ → 0. A result is given in
Theorem 2.

Theorem 1. Assume that (Xi)
∞

i=1 are i.i.d. positive random variables supported on [ϵ, ∞) for some constant ϵ > 0, E[eθX1 ] < ∞

for any θ ∈ R and Λ(x) := supθ∈R{θx − logE[eθX1 ]}. Then,
⌈nt⌉

k=1
Sk
k

1/n
satisfies a sample path large deviation principle on

L∞[0, 1] with the good rate function

I(g) =

 1

0
Λ


1 + t ·

g ′′g − (g ′)2

g2


eg

′/g

dt, (2.2)

if g(t) = e
 t
0 log(f (s)/s)ds, 0 ≤ t ≤ 1 for some f ∈ AC+

0 [0, 1] such that f ′
≥ ϵ and I(g) = +∞ otherwise.

Proof. Since ( 1
nS⌈nt⌉ ∈ ·) satisfies a sample path large deviation on L∞[0, 1] and (

⌈nt⌉
k=1

Sk
k )1/n = e

1
n
⌈nt⌉

k=1 log(Sk/k), it is
natural to use the contraction principle to prove the sample path large deviation principle in our problem. In order to apply
the contraction principle, one needs to check that the map from one space to the other is continuous. We claim that if
∥fn − f ∥L∞[0,1] → 0 as n → ∞, then, we have

sup
0≤t≤1

 t

0
log

fn(s)
s

ds −

 t

0
log

f (s)
s

ds
 → 0, (2.3)

as n → ∞. Let us give some explanations. SinceXi are supported on [ϵ, ∞), we have I(f ) = +∞unless f ′(s) ≥ ϵ, 0 ≤ s ≤ 1.
Therefore, in (2.3), both log fn(s)

s and log f (s)
s are integrable at 0+ and hence

sup
0≤t≤1

 t

0
log

fn(s)
s

ds −

 t

0
log

f (s)
s

ds


≤

 δ

0
| log fn(s)|ds +

 δ

0
| log f (s)|ds + (1 − δ) sup

δ≤s≤1
|log fn(s) − log f (s)| . (2.4)

For any δ′ > 0, for any sufficiently large n, we have ϵs ≤ fn(s) ≤ f (s) + δ′. Therefore | log fn(s)| ≤ | log f (s)| + | log ϵs| and
also ∥ log fn − log f ∥L∞[δ,1] → 0 as n → ∞. Therefore, letting n → ∞, we have

lim sup
n→∞

 t

0
log

fn(s)
s

ds −

 t

0
log

f (s)
s

ds
 ≤

 δ

0
| log ϵs|ds + 2

 δ

0
| log f (s)|ds → 0, (2.5)

as δ → 0 since log f (s) and log(s) are integrable at 0+.
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