A random process related to a random walk on upper triangular matrices over a finite field

Martin Hildebrand
Department of Mathematics and Statistics, University at Albany, State University of New York, Albany, NY 12222, United States

A R TICLE INFO

Article history:

Received 27 August 2013
Accepted 1 March 2014
Available online 11 March 2014

Keywords:

Random process
Upper triangular matrices

Abstract

This article considers a random process related to a random walk on n by n upper triangular matrices over a finite field \mathbb{F}_{q} where q is an odd prime. The walk starts with the identity, and at each step, i is selected at random from $\{2, \ldots, n\}$ and either row i or the negative of row i is added to row $i-1$. This article shows that, for a given q, it takes order n^{2} steps for the last column to get close to uniformly distributed over all possibilities for that column. © 2014 Elsevier B.V. All rights reserved.

1. Introduction

A couple of random walks on $U_{n}\left(\mathbb{F}_{q}\right)$, the group of n by n upper triangular matrices with entries in a finite field \mathbb{F}_{q} and $n \geq 2$, have been studied. One walk, denoted by \mathcal{W}_{1}, involves at each step adding a times row i to row $i-1$ where i is chosen uniformly from $\{2, \ldots, n\}$ and a is chosen uniformly from \mathbb{F}_{q}. Another walk, denoted by \mathcal{W}_{2}, involves at each step adding ± 1 times row i to row $i-1$ where i chosen uniformly from $\{2, \ldots, n\}$ and each sign is chosen with probability $1 / 2$. These walks start with the identity matrix, and each step is chosen independent of earlier steps.

In Peres and Sly (2013), they have shown that a lazy version of \mathcal{W}_{1} is close to uniformly distributed on $U_{n}\left(\mathbb{F}_{q}\right)$ after order $n^{2} \log q$ steps. An important part of their argument involves the last column of the matrix. In Stong (1995), he has shown that after order $n^{3} q^{2} \log q$ steps, \mathcal{W}_{2} is close to uniformly distributed on $U_{n}\left(\mathbb{F}_{q}\right)$.

In this paper, we consider the last column of the matrix in the random walk \mathcal{W}_{2}. We show that if q is a given odd prime, then order n^{2} steps suffice to make the last column close to uniformly distributed on all possibilities for the last column. The proof involves representation theory of $\mathbb{F}_{q}{ }^{n-1}$ and the Upper Bound lemma of Diaconis and Shahshahani.

2. Notation and background

Let \mathbb{F}_{q} be a finite field with q elements in it where q is an odd prime number. Let $U_{n}\left(\mathbb{F}_{q}\right)$ be the group of n by n upper triangular matrices with 1 's on the diagonal, 0 's below the diagonal, and entries in \mathbb{F}_{q} above the diagonal.

If P is a probability on a finite set S and U is the uniform probability on S (i.e. $U(s)=1 /|S|$ for all $s \in S$), then we define the variation distance of P from U by

$$
\|P-U\|=\frac{1}{2} \sum_{s \in S}|P(s)-U(s)|
$$

It can be shown that

$$
\|P-U\|=\max _{A \subset S}|P(A)-U(A)|
$$

where $P(A)=\sum_{s \in A} P(s)$ and the maximum is over all subsets A of S.

[^0]If the set S is the set of elements of a finite group G, then the Upper Bound lemma of Diaconis and Shahshahani (described in Diaconis, 1988) can be used to bound $\|P-U\|$.

Lemma 1 (Upper Bound Lemma of Diaconis and Shahshahani).

$$
\|P-U\|^{2} \leq \frac{1}{4} \sum_{\rho}^{*} d_{\rho} \operatorname{Tr}\left(\hat{P}(\rho) \hat{P}(\rho)^{*}\right)
$$

where the sum is over all irreducible representations ρ on G up to equivalence, d_{ρ} is the degree of ρ, the Fourier transform $\hat{P}(\rho)=\sum_{s \in G} P(s) \rho(s)$, the irreducible representations are assumed to be unitary, and $\hat{P}(\rho)^{*}$ is the conjugate transpose of $\hat{P}(\rho)$.

3. Main result

We shall define random variables $X_{0}, X_{1}, X_{2}, \ldots$ on $\mathbb{F}_{q}{ }^{n-1}$ as follows.
Let X_{0} be the column vector with $n-10$'s. Let

$$
X_{m+1}=A_{m} X_{m}+b_{m}
$$

where $\left(A_{0}, b_{0}\right),\left(A_{1}, b_{1}\right), \ldots$ are i.i.d. such that

$$
P\left(\left(A_{0}, b_{0}\right)=\left(M_{\ell}^{+}, c_{\ell}\right)\right)=P\left(\left(A_{0}, b_{0}\right)=\left(M_{\ell}^{-},-c_{\ell}\right)\right)=\frac{1}{2(n-1)}
$$

for $\ell=2, \ldots, n$, and $M_{\ell}^{+}, M_{\ell}^{-}$, and c_{ℓ} are defined as follows. M_{n}^{+}and M_{n}^{-}are $(n-1)$ by $(n-1)$ identity matrices. c_{n} is a column vector with $n-20$'s followed by a 1 . M_{ℓ}^{+}, for $2 \leq \ell \leq n-1$, is $(n-1)$ by $(n-1)$ matrix with diagonal entries 1 , with the entry in position $(\ell-1, \ell)$ being 1 , and all other entries 0 . M_{ℓ}^{-}, for $2 \leq \ell \leq n-1$, is $(n-1)$ by ($n-1$) matrix with diagonal entries 1 , with the entry in position $(\ell-1, \ell)$ being -1 , and with all other entries 0 . c_{ℓ}, for $2 \leq \ell \leq n-1$, is the zero vector with $n-1$ entries being in one column.

Note that X_{m} is the last column of the upper triangular matrix after m steps of the random walk \mathcal{W}_{2}. Also note that if $n=2$, this random process is a simple random walk on \mathbb{F}_{q}.

Let P_{m} be the probability on $\mathbb{F}_{q}{ }^{n-1}$ such that for all $s \in \mathbb{F}_{q}{ }^{n-1}, P_{m}(s)$ is the probability that $X_{m}=s$.
The main result is as follows.
Theorem 1. Suppose q is a given odd prime. Then for some constant $c_{q}>0$, if $m>c_{q} n^{2}$, then $\left\|P_{m}-U\right\| \rightarrow 0$ as $n \rightarrow \infty$.
We assume $n \geq 3$ in the proof.
To prove this theorem, we shall use a recurrence relation involving the Fourier transforms of P_{m}, and then we use this recurrence relation, some arguments involving discrete probability, and the Upper Bound Lemma.

4. Recurrence relation for Fourier transforms

First observe

$$
P\left(X_{m+1}=j\right)=\frac{1}{2(n-1)} \sum_{\ell=2}^{n}\left(P\left(M_{\ell}^{+} X_{m}+c_{\ell}=j\right)+P\left(M_{\ell}^{-} X_{m}-c_{\ell}=j\right)\right)
$$

For each $k \in \mathbb{F}_{q}{ }^{n-1}$, let $\hat{P}_{m+1}(k)$ denote $\hat{P}_{m+1}\left(\rho_{k}\right)$ where $\rho_{k}(j)=\omega^{k^{T} j}$ where $\omega=e^{2 \pi i / q}$ and k^{T} is the transpose of k. Then

$$
\begin{aligned}
\hat{P}_{m+1}(k) & =\sum_{j} P\left(X_{m+1}=j\right) \omega^{k^{T} j} \\
& =\sum_{j} \frac{1}{2(n-1)}\left(\sum_{\ell=2}^{n}\left(P\left(M_{\ell}^{+} X_{m}+c_{\ell}=j\right)+P\left(M_{\ell}^{-} X_{m}-c_{\ell}=j\right)\right)\right) \omega^{k^{T} j} \\
& =\sum_{\ell=2}^{n} \frac{1}{2(n-1)}\left(\sum_{j} P\left(X_{m}=\left(M_{\ell}^{+}\right)^{-1}\left(j-c_{\ell}\right)\right) \omega^{k^{T} j}+\sum_{j} P\left(X_{m}=\left(M_{\ell}^{-}\right)^{-1}\left(j+c_{\ell}\right)\right) \omega^{k^{T_{j}}}\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
\sum_{j} P\left(X_{m}=\left(M_{\ell}^{+}\right)^{-1}\left(j-c_{\ell}\right)\right) \omega^{k^{T} j} & =\sum_{j} P\left(X_{m}=\left(M_{\ell}^{+}\right)^{-1} j\right) \omega^{k^{T}\left(j+c_{\ell}\right)} \\
& =\sum_{j} P\left(X_{m}=j\right) \omega^{k^{T}\left(M_{\ell}^{+} j+c_{\ell}\right)} \\
& =\sum_{j} P\left(X_{m}=j\right) \omega^{\left(\left(M_{\ell}^{+}\right)^{T} k\right)^{T} j} \omega^{k^{T} c_{\ell}} \\
& =\hat{P}_{m}\left(\left(M_{\ell}^{+}\right)^{T} k\right) \omega^{k^{T} c_{\ell}}
\end{aligned}
$$

https://daneshyari.com/en/article/1151810

Download Persian Version:
https://daneshyari.com/article/1151810

Daneshyari.com

[^0]: E-mail address: mhildebrand@albany.edu.
 http://dx.doi.org/10.1016/j.spl.2014.03.001
 0167-7152/© 2014 Elsevier B.V. All rights reserved.

