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a b s t r a c t

This paper is devoted to the interplay between time-fractional telegraph-type equations
and processes defined on the n-dimensional Poincaré half-space Hn. We solve such
equations and show that the solutions coincide with the law of the composition of a
hyperbolic Brownian motion with the inverse of the sum of two independent stable
subordinators. In the case n = 3, we obtain the explicit form of the solution of the above
equation.
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1. Introduction

This paper is concerned with randommotions on the hyperbolic Poincaré half-space Hn
=

x, y : x ∈ Rn−1, y > 0


. We

focus our attention on the behaviour of the hyperbolic random distance η of (x, y) from the origin O = (0, 1) which is given
by

cosh η =

n−1
j=1

x2i + y2 + 1

2y
. (1.1)

We consider the randommotions inHn where the distanceη has distribution pν
n(η, t) satisfying the telegraph-type fractional

equation of the form


∂2ν

∂t2ν
+ 2λ

∂ν

∂tν


pν
n (η, t) =

∂

∂η


sinhn−1 η

∂

∂η


1

sinhn−1 η
pν
n (η, t)


, η > 0, t > 0

pν
n (η, 0) = δ (η) ,

(1.2)
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for 0 < ν ≤
1
2 and n ∈ N. The kernel κν

n (η, t) corresponding to pν
n (η, t) defined as

κν
n (η, t) =

1
sinhn−1 η

pν
n (η, t), η > 0, t > 0, (1.3)

solves instead the fractional equation


∂2ν

∂t2ν
+ 2λ

∂ν

∂tν


κν
n (η, t) =

1
sinhn−1 η

∂

∂η


sinhn−1 η

∂

∂η
κν
n (η, t)


, η > 0, t > 0,

κν
n (η, 0) = δ (η) .

(1.4)

where the operator

G ⋆
=

∂

∂η


sinhn−1 η

∂

∂η


1

sinhn−1 η


, n ∈ N (1.5)

is the adjoint of

G =
1

sinhn−1 η

∂

∂η


sinhn−1 η

∂

∂η


. (1.6)

The fractional derivatives in (1.2) and (1.4) must be understood in the sense of Dzerbayshan–Caputo, that is for ν ∈ (0, 1)

∂ν

∂tν
u(x, t) =

1
Γ (1 − ν)

 t

0

∂
∂su(x, s)
(t − s)ν

ds, ν ∈ (0, 1). (1.7)

For Dzerbayshan–Caputo fractional calculus consult, for example, Kilbas et al. (2006). The processT ν
n (t), t > 0, in Hn which

possesses distribution pν
n (x, t) solving (1.2) is obtained by means of the composition

T ν
n (t) = Bhp

n


Lν(t)


, t > 0, (1.8)

where Bhp
n is the hyperbolic Brownian motion in Hn independent fromLν(t) which is defined as

Lν(t) = inf

s > 0 : H2ν

1 (s) + (2λ)
1
ν Hν

2 (s) ≥ t


, ν ∈


0,

1
2


, (1.9)

for H2ν
1 ,Hν

2 independent stable subordinators. The hyperbolic Brownian motion has been introduced in the plane
by Gertsenshtein and Vasiliev (1959) and in H3 by Karpelevich et al. (1959). In successive papers many properties of the
hyperbolic Brownian motion have been explored (see for example Getoor (1961), Gruet (1996), Lao and Orsingher (2007)
and Matsumoto and Yor (2005)). The relationship between kernels in H2 and H3 and kernels in higher-order spaces is
represented by the Millson formula

kn+2 (η, t) = −
e−nt

2π sinh η

∂

∂η
kn(η, t), η > 0, t > 0, n ∈ N. (1.10)

Since php3 and k3 are considerably simpler than php2 and k2 we give explicit expressions for the distribution

p
1
2
3 (η, t) =

λ η sinh η

2π

 t

0

e−s

s
3
2
√
t − s

e−
λ2s2
t−s −

η2
4s


s

t − s
+ 2


ds, (1.11)

where η > 0 and t > 0 and p
1
2
3 is the probability density of Bhp

3


L 1

2 (t)

, t > 0. This distribution solves the fractional-

hyperbolic telegraph equation (1.2), for ν =
1
2 and n = 3.

2. Hyperbolic fractional telegraph equations

The hyperbolic Brownian motion is a diffusion on the Poincaré half-space

Hn
=

(x, y) : x ∈ Rn−1, y > 0


, (2.1)

with generator, written in cartesian coordinates,

Hn =
1
2


y2


n−1
j=1

∂2

∂x2j
+

∂2

∂y2


+ (2 − n)y

∂

∂y


. (2.2)
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