Intuitive approximations in discrete renewal theory, Part 1: Regularly varying case

Edward Omey, Stefan Van Gulck*
KU Leuven, Faculty of Economics and Business - Campus Brussels, Warmoesberg 26, 1000 Brussels, Belgium

ARTICLE INFO

Article history:

Received 30 January 2015
Accepted 3 May 2015
Available online 8 May 2015

MSC:

60K05
60E10
26A12
Keywords:
Renewal sequence
Regular variation
Approximations

Abstract

It is usually impossible to find explicit expressions for the renewal sequence. This paper presents a simple method to approximate the renewal sequence, which covers many of the known approximations. The paper uses the ideas of Mitov and Omey (2014).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that X, X_{1}, X_{2}, \ldots are i.i.d. nonnegative integer-valued random variables with p.d.f. $p_{k}=P(X=k), k \in \mathbb{N}_{0}$. The d.f. of X is given by $F(x)=P(X \leq x)$ and its tail is denoted by $\bar{F}(x)=1-F(x)$. Throughout the paper we assume that $\left(p_{k}\right)$ is aperiodic: $\operatorname{gcd}\left\{k: p_{k}>0\right\}=1$. We also assume that $0<\mu=E(X)<\infty$. For $n \in \mathbb{N}_{0}$, the partial sums S_{n} are given by $S_{0}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 1$. Note that $P\left(S_{n} \leq x\right)=F^{\star n}(x)$, which is the n-fold convolution of F, i.e. $F^{\star 0}=1_{[0, \infty)}$ and $F^{\star n}=F \star F^{\star(n-1)}$, where the convolution of two d.f. is defined by $F \star G(x)=\int_{0}^{x} F(x-y) d G(y)$. For briefness, we write $F^{\star n}(x)$ as $F_{k}^{\star n}$ in case x is a nonnegative integer k. Moreover, $P\left(S_{n}=k\right)=p_{k}^{* n}$, which is the n-fold convolution of $\left(p_{k}\right)$, i.e. $p_{k}^{* 0}=1_{\{0\}}(k)$ and $p_{k}^{* n}=\left(p * p^{*(n-1)}\right)_{k}$, where the convolution of two sequences $\left(a_{k}\right)$ and $\left(b_{k}\right)$ is defined by $(a * b)_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}$. The generating function of X is $\hat{P}(z)=E\left(z^{X}\right),|z|<1$, and $\hat{P}(1)=1$. The generating function of S_{n} is given by $\hat{P}^{n}(z)$. Since X has finite expectation, we have $\mu=\hat{P}^{\prime}(1)$.

Let X_{e} be a random variable, independent of X, that has the equilibrium distribution corresponding to X, i.e. $p_{e, k}=P\left(X_{e}=\right.$ $k)=\bar{F}_{k} / \mu$ for $k \in \mathbb{N}_{0}$. The generating function of X_{e} satisfies $\hat{P}_{e}(z)=(1-\hat{P}(z)) /(\mu(1-z))$. Define $S_{e, n}=X_{e, 1}+\cdots+X_{e, n}$, $p_{e, k}^{* n}$, and $F_{e, k}^{\star n}$ analogously as above.

The renewal sequence $\left(u_{n}\right)$ is defined by $u_{n}=\sum_{k=0}^{\infty} p_{n}^{* k}$. The aim of the present paper is to obtain approximations for u_{n} when n is large. Therefore, all limits that appear later are taken with respect to $n \rightarrow \infty$. It is well known that $u_{n} \rightarrow 1 / \mu$ and the main problem is to obtain precise estimates for the rate at which $u_{n}-1 / \mu \rightarrow 0$ or $\Delta u_{n}=u_{n-1}-u_{n} \rightarrow 0$.

[^0]Following the approach of Mitov and Omey (2014), we start from the generating function of $\left(u_{n}\right)$, which is given by $\hat{U}(z)=\sum_{n=0}^{\infty} u_{n} z^{n}=(1-\hat{P}(z))^{-1}=\left(\mu(1-z)\left(1-\left(1-\hat{P}_{e}(z)\right)\right)\right)^{-1}$. Using a Taylor expansion, we obtain that

$$
\begin{equation*}
\hat{U}(z)=\sum_{k=0}^{\infty} \hat{T}_{k}(z), \quad \text { with } \quad \hat{T}_{k}(z)=\frac{1}{\mu(1-z)}\left(1-\hat{P}_{e}(z)\right)^{k} \tag{1}
\end{equation*}
$$

Formula (1) suggests the following approximations $\hat{U}_{m}(z)$ for $\hat{U}(z): \hat{U}_{m}(z)=\sum_{k=0}^{m} \hat{T}_{k}(z)$. By inversion, this approach then leads to approximations $u_{m, n}$ for the renewal sequence u_{n} of the form $u_{m, n}=\sum_{k=0}^{m} t_{k, n}$, where the sequence $\left(t_{k, n}\right)$ has generating function $\hat{T}_{k}(z)=\sum_{n=0}^{\infty} t_{k, n} z^{n}$. In the next section we will identify $\hat{T}_{k}(z)$ and $\left(t_{k, n}\right)$. In this paper we focus on the cases $0 \leq m \leq 3$ and show that our approximations ($u_{m, n}$) correspond to the approximations that have been published in many papers before.

2. The sequences $\left(t_{k, n}\right)$ and $\left(\delta_{k, n}\right)$

2.1. Expressions for $\left(t_{k, n}\right)$ and $\left(\delta_{k, n}\right)$

We first identify $\hat{T}_{k}(z)$. If $k=0$, then (1) gives $\hat{T}_{0}(z)=1 /(\mu(1-z))$, which shows that $\hat{T}_{0}(z)$ is the generating function of $t_{0, n}=1 / \mu$. For $k \geq 1$, the binomial expansion in (1) yields

$$
\begin{aligned}
\hat{T}_{k}(z) & =\frac{1}{\mu(1-z)} \sum_{i=0}^{k}\binom{k}{i}(-1)^{i} \hat{P}_{e}^{i}(z) \\
& =\frac{-1}{\mu(1-z)} \sum_{i=1}^{k}\binom{k}{i}(-1)^{i}\left(1-\hat{P}_{e}^{i}(z)\right)
\end{aligned}
$$

Since $\hat{P}_{e}^{i}(z)$ is the generating function of $S_{e, i}$, we have $\left(1-\hat{P}_{e}^{i}(z)\right) /(1-z)=\sum_{n=0}^{\infty} \overline{F_{e, n}^{\star i}} z^{n}$. We therefore obtain the following result.

Lemma 1. For $n \geq 1$, let $\delta_{k, n}=t_{k, n-1}-t_{k, n}$. Then $t_{0, n}=1 / \mu, \delta_{0, n}=0$ and, if $k \geq 1$,

$$
\begin{align*}
& t_{k, n}=-\frac{1}{\mu} \sum_{i=1}^{k}\binom{k}{i}(-1)^{i} \overline{F_{e, n}^{\star i}} \tag{2}\\
& \delta_{k, n}=-\frac{1}{\mu} \sum_{i=1}^{k}\binom{k}{i}(-1)^{i} p_{e, n}^{* i} \tag{3}
\end{align*}
$$

We now consider into detail the cases $k=1,2,3$.
Lemma 2. For $k \geq 2$, let $R_{k, n}^{e}=\overline{F_{e, n}^{\star k}}-k \bar{F}_{e, n}$ and $r_{k, n}^{e}=p_{e, n}^{* k}-k p_{e, n}$. Then

$$
\begin{aligned}
& t_{1, n}=\bar{F}_{e, n} / \mu \quad \delta_{1, n}=p_{e, n} / \mu \\
& t_{2, n}=-R_{2, n}^{e} / \mu \quad \delta_{2, n}=-r_{2, n}^{e} / \mu \\
& t_{3, n}=\left(R_{3, n}^{e}-3 R_{2, n}^{e}\right) / \mu \quad \delta_{3, n}=\left(r_{3, n}^{e}-3 r_{2, n}^{e}\right) / \mu
\end{aligned}
$$

Proof. The results follow directly from (2) and (3).

2.2. Asymptotic behaviour of $\left(t_{k, n}\right)$ and $\left(\delta_{k, n}\right), 1 \leq k \leq 3$.

In order to discuss the asymptotic behaviour of $\left(t_{k, n}\right)$ and $\left(\delta_{k, n}\right)$, we recall some basic definitions and properties of regularly varying sequences.

2.2.1. Regularly varying sequences

A sequence of real numbers $\left(a_{n}\right)$ is regularly varying at infinity and with real index α if $a_{n}>0$ for n large and if

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{a_{[x y]}}{a_{[x]}}=y^{\alpha}, \quad \forall y>0 \tag{4}
\end{equation*}
$$

Notation: $\left(a_{n}\right) \in R S(\alpha)$. We write $\left(a_{n}\right) \in R S$ if $\left(a_{n}\right) \in R S(\alpha)$ for some $\alpha \in \mathbb{R}$. If $\left(a_{n}\right) \in R S(\alpha)$, then (4) holds locally uniformly in $y>0$; see Sections 1.2 and 1.9 in Bingham et al. (1987). From this it follows that $R S \subset L S$, where a sequence of real

https://daneshyari.com/en/article/1151849

Download Persian Version:
https://daneshyari.com/article/1151849

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: stefan.vangulck@kuleuven.be (S. Van Gulck).

