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a b s t r a c t

It is usually impossible to find explicit expressions for the renewal sequence. This paper
presents a simple method to approximate the renewal sequence, which covers many of
the known approximations. The paper uses the ideas of Mitov and Omey (2014).
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1. Introduction

Suppose that X, X1, X2, . . . are i.i.d. nonnegative integer-valued random variables with p.d.f. pk = P(X = k), k ∈ N0.
The d.f. of X is given by F(x) = P(X ≤ x) and its tail is denoted by F(x) = 1 − F(x). Throughout the paper we assume
that (pk) is aperiodic: gcd {k : pk > 0} = 1. We also assume that 0 < µ = E(X) < ∞. For n ∈ N0, the partial sums Sn are
given by S0 = 0 and Sn = X1 + · · · + Xn for n ≥ 1. Note that P(Sn ≤ x) = F ⋆n(x), which is the n-fold convolution of F ,
i.e. F ⋆0

= 1[0,∞) and F ⋆n
= F ⋆ F ⋆(n−1), where the convolution of two d.f. is defined by F ⋆ G(x) =

 x
0 F(x − y)dG(y). For

briefness, we write F ⋆n(x) as F ⋆n
k in case x is a nonnegative integer k. Moreover, P(Sn = k) = p∗n

k , which is the n-fold convo-
lution of (pk), i.e. p∗0

k = 1{0}(k) and p∗n
k = (p ∗ p∗(n−1))k, where the convolution of two sequences (ak) and (bk) is defined by

(a ∗ b)k =
k

i=0 aibk−i. The generating function of X is P̂(z) = E(zX ), |z| < 1, and P̂(1) = 1. The generating function of Sn
is given by P̂n(z). Since X has finite expectation, we have µ = P̂ ′(1).

Let Xe be a randomvariable, independent of X , that has the equilibriumdistribution corresponding to X , i.e. pe,k = P(Xe =

k) = F k/µ for k ∈ N0. The generating function of Xe satisfies P̂e(z) = (1− P̂(z))/(µ(1− z)). Define Se,n = Xe,1 + · · · + Xe,n,
p∗n
e,k, and F ⋆n

e,k analogously as above.
The renewal sequence (un) is defined by un =


∞

k=0 p
∗k
n . The aim of the present paper is to obtain approximations for un

when n is large. Therefore, all limits that appear later are taken with respect to n → ∞. It is well known that un → 1/µ
and the main problem is to obtain precise estimates for the rate at which un − 1/µ → 0 or ∆un = un−1 − un → 0.
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Following the approach of Mitov and Omey (2014), we start from the generating function of (un), which is given by
Û(z) =


∞

n=0 unzn = (1 − P̂(z))−1
= (µ(1 − z)(1 − (1 − P̂e(z))))−1. Using a Taylor expansion, we obtain that

Û(z) =

∞
k=0

T̂k(z), with T̂k(z) =
1

µ(1 − z)
(1 − P̂e(z))k. (1)

Formula (1) suggests the following approximations Ûm(z) for Û(z): Ûm(z) =
m

k=0 T̂k(z). By inversion, this approach then
leads to approximations um,n for the renewal sequence un of the form um,n =

m
k=0 tk,n, where the sequence (tk,n) has

generating function T̂k(z) =


∞

n=0 tk,nz
n. In the next section we will identify T̂k(z) and (tk,n). In this paper we focus on the

cases 0 ≤ m ≤ 3 and show that our approximations (um,n) correspond to the approximations that have been published in
many papers before.

2. The sequences (tk,n) and (δk,n)

2.1. Expressions for (tk,n) and (δk,n)

We first identify T̂k(z). If k = 0, then (1) gives T̂0(z) = 1/(µ(1 − z)), which shows that T̂0(z) is the generating function
of t0,n = 1/µ. For k ≥ 1, the binomial expansion in (1) yields

T̂k(z) =
1

µ(1 − z)

k
i=0


k
i


(−1)iP̂ i

e(z)

=
−1

µ(1 − z)

k
i=1


k
i


(−1)i(1 − P̂ i

e(z)).

Since P̂ i
e(z) is the generating function of Se,i, we have (1− P̂ i

e(z))/(1− z) =


∞

n=0 F ⋆i
e,nz

n. We therefore obtain the following
result.

Lemma 1. For n ≥ 1, let δk,n = tk,n−1 − tk,n. Then t0,n = 1/µ, δ0,n = 0 and, if k ≥ 1,

tk,n = −
1
µ

k
i=1


k
i


(−1)iF ⋆i

e,n, (2)

δk,n = −
1
µ

k
i=1


k
i


(−1)ip∗i

e,n. (3)

We now consider into detail the cases k = 1, 2, 3.

Lemma 2. For k ≥ 2, let Re
k,n = F ⋆k

e,n − kF e,n and rek,n = p∗k
e,n − kpe,n. Then

t1,n = F e,n/µ δ1,n = pe,n/µ
t2,n = −Re

2,n/µ δ2,n = −re2,n/µ

t3,n = (Re
3,n − 3Re

2,n)/µ δ3,n = (re3,n − 3re2,n)/µ.

Proof. The results follow directly from (2) and (3). �

2.2. Asymptotic behaviour of (tk,n) and (δk,n), 1 ≤ k ≤ 3.

In order to discuss the asymptotic behaviour of

tk,n


and (δk,n), we recall some basic definitions and properties of

regularly varying sequences.

2.2.1. Regularly varying sequences
A sequence of real numbers (an) is regularly varying at infinity and with real index α if an > 0 for n large and if

lim
x→∞

a[xy]
a[x]

= yα, ∀y > 0. (4)

Notation: (an) ∈ RS(α). We write (an) ∈ RS if (an) ∈ RS(α) for some α ∈ R. If (an) ∈ RS(α), then (4) holds locally uniformly
in y > 0; see Sections 1.2 and 1.9 in Bingham et al. (1987). From this it follows that RS ⊂ LS, where a sequence of real
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