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1. Introduction

Suppose that X, Xi, X, ... are i.i.d. nonnegative integer-valued random variables with p.d.f. py = P(X = k), k € No.
The d.f. of X is given by F(x) = P(X < x) and its tail is denoted by F(x) = 1 — F(x). Throughout the paper we assume
that (py) is aperiodic: gcd {k : p, > 0} = 1. We also assume that 0 < u = E(X) < o0. For n € Ny, the partial sums S,, are
givenby So = 0and S, = X; + --- + X, forn > 1. Note that P(S;, < x) = F*"(x), which is the n-fold convolution of F,
i.e. F* = 1)) and F*" = F » F*™~D where the convolution of two d.f. is defined by F » G(x) = [, F(x — y)dG(y). For
briefness, we write F*"(x) as F;™ in case x is a nonnegative integer k. Moreover, P(S, = k) = p;", which is the n-fold convo-
lution of (py), i.e. p;° = 140y(k) and p;" = (p » p*™~ V), where the convolution of two sequences (a,) and (by) is defined by
(axb), = ZLO a;b,_;. The generating function of X is 13(2) =EZ*), |z| < 1,and 13(1) = 1. The generating function of S,
is given by 13"(2). Since X has finite expectation, we have yu = 13/(1).

Let X, be arandom variable, independent of X, that has the equilibrium distribution corresponding to X, i.e. pe x = P(Xe =
k) = Fi/u for k € Ny. The generating function of X, satisfies P,(z) = (1 — P(z))/(1+(1 — 2)). Define Sen=Xe1+ - +Xen
py and Fy', analogously as above.

The renewal sequence (u,) is defined by u,, = Z,ﬁ’io pz". The aim of the present paper is to obtain approximations for u,

when n is large. Therefore, all limits that appear later are taken with respect ton — ooc. It is well known that u, — 1/u
and the main problem is to obtain precise estimates for the rate at whichu, — 1/u — Oor Au, = uy,—1 — u, — 0.
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Following the approach of Mitov and Omey (2014), we start from the generating function of (u,), which is given by
Uz) =Y plounz" = (1 —P(2))" "' = (u(1 —2)(1 — (1 — Pe(2)))) . Using a Taylor expansion, we obtain that

.\ > . o 1 N
Uiz) =) Tiz), with Te(z) = ——(1 = P.(2))*. 1
@) k;‘ v@), with @) = (1 - Pe(@) Q)

Formula (1) suggests the following approximations Um (z) for U (2): 0m (2) = ZZLO YA",((Z). By inversion, this approach then
leads to approximations uy, , for the renewal sequence u, of the form u, , = ka:o t.n, where the sequence (t ) has

generating function Tk(z) = Zﬁio tr.nz". In the next section we will identify fk(z) and (tx ). In this paper we focus on the
cases 0 < m < 3 and show that our approximations (up ) correspond to the approximations that have been published in
many papers before.

2. The sequences (tx,,) and (x,,)
2.1. Expressions for (t.) and (Sk,n)

We first identify f"k(z). If k = 0, then (1) gives fo(z) = 1/(u(1 — 2)), which shows that f"o(z) is the generating function
of to.n = 1/p. For k > 1, the binomial expansion in (1) yields

R 1 ko rk iai
@ = 7 > (l.)(—l) P,(2)

i=0

-1 ko rk ; ~
) > (i>(_1) (1—Pi@)).

i=1

Since 132, (2) is the generating function of S, ;, we have (1 — 13:? @/ A—-2)=>2, EZ”. We therefore obtain the following
result.

Lemma 1. For n > 1, let 8y n = tgn—1 — tn. Thenton = 1/, Son = 0and, if k > 1,

1 <N [k =
tk,n = _M;<l>(_1) Fe,n’ (2)
k.n — L - i pe,n'

We now consider into detail the cases k = 1, 2, 3.

Lemma 2. For k > 2, let R}, = FzX — kF,, andr{, = pi* — kpe n. Then

t1.n =Fe,n/l/v 81,n = Den/ M
bon = _Rg,n/lj* 52,n = —r;n/u
t3,1’1 = (R('_?’,’n - 3R;’n)/lj’ 83,T‘l = (r;n - 3r§,n)/l’l"

Proof. The results follow directly from (2) and (3). O
2.2. Asymptotic behaviour of (txn) and (§x.n), 1 < k < 3.

In order to discuss the asymptotic behaviour of (tk,n) and (8k.,), we recall some basic definitions and properties of
regularly varying sequences.

2.2.1. Regularly varying sequences
A sequence of real numbers (a,) is regularly varying at infinity and with real index « if a, > 0 for n large and if

a
lim -
X—>00 al‘xl

=y Vy>0. 4)

Notation: (a,) € RS(«). We write (a,) € RS if (a;) € RS(«) for some @ € R.If (a;) € RS(«), then (4) holds locally uniformly
iny > 0; see Sections 1.2 and 1.9 in Bingham et al. (1987). From this it follows that RS C LS, where a sequence of real
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