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a b s t r a c t

Mixture discrepancy is more reasonable than other discrepancies for measuring the
uniformity from different aspects such as the intuitive view, the uniformity of sub-
dimension projection, the curse of dimensionality and the geometric property of the kernel
function. In this paper, we discuss in depth the mixture discrepancy as the uniformity
measure for symmetric two-, three- and four-level balanced designs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Uniform design has been widely applied in many fields, such as manufacturing, system engineering, pharmaceutics and
natural sciences. Uniformdesign is spread experimental points uniformly on the experimental domain.Much effort has been
spent on the measurement of the design uniformity and the construction of uniform designs. While there exist several dis-
crepancymeasures,which can be used in evaluating the uniformity of designs, the problemof finding designswithminimum
discrepancy on a super-rectangle is still very difficult due to the computational intractability of finding a globally optimal
solution, and also due to the lack of good benchmarks. It is found that, if restricted on balanced lattice designs, or called
U-type designs, the problem becomes relatively easier. It is for this reason that, we only discuss in this paper symmetrical
U-type designs. A symmetrical balanced (U-type) design D(n; sm) corresponds to an n × m matrix X = (x1, . . . , xm) such
that each column xi takes values from a set of s integers, say 0, 1, . . . , s−1, equally often. Bymapping f : x → (2x+1)/(2s),
x = 0, 1, . . . , s− 1, the n runs are transformed into n points inΩm

= [0, 1]m. Throughout this paper the class of n runs and
m factors with s-level balanced (U-type) designs, denoted as U(n; sm).

The measure of uniformity plays a key role in the construction of uniform designs. There are several different discrepan-
cies defined. Recently, Zhou et al. (2013) pointed out some unreasonable phenomena associated with the commonly used
discrepancies in the literature such as the centered L2-discrepancy (CD) and the wrap-around L2-discrepancy (WD). They
proposed a new measurement known as the mixture discrepancy (MD). They proposed that MD satisfies 7 criteria for as-
sessingmeasures of uniformity introduced in Fang et al. (2006). Furthermore Zhou et al. (2013) pointed out some limitations
of CD andWD through examples. That is, CD covers the points near the center insufficiently and thismeasurementwill cause
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some problems when data is high dimensional, WD is not sensitive for each level shift in a certain sense. These limitations
may lead to some unreasonable results.MD performs well under these situations, compared to CD andWD. Meanwhile, this
new discrepancy has a clear geometric meaning and a simple computational formula. This new discrepancy has many good
properties and can avoid weaknesses of CD and WD. The analytical formula of the mixture discrepancy is given as follows.
For a design D ∈ U(n; sm), its mixture discrepancy value, denoted asMD(D), can be expressed in the following form:
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2, xik = (2dik +1)/2s,
dik ∈ {0, 1, . . . , s − 1} , i = 1, . . . , n, k = 1, . . . ,m.

In this paper, we discuss in depth the mixture discrepancy for symmetric two-, three- and four-level balanced designs
and give new analytical expressions. Based on these new formulations, we present new lower bounds of this discrepancy for
symmetric two-, three- and four-level balanced designs, which can be used as benchmarks for searching uniform (optimal)
designs. We describe necessary conditions for the existence of a uniform design meeting these lower bounds. On the other
hand, our results give new lower bounds, which are more useful and sharper than the lower bounds of Zhou et al. (2013)
and Ke et al. (2015) for two-level balanced designs and Ke et al. (2015) for three-level balanced designs.

2. Mixture discrepancy on two-level balanced designs

In this case, the variable∆ik can only take one possible value, i.e.,
 305
192
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and the variable∆ijk can also take twopossible val-

ues, i.e.,
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when xik = xjk or
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when xik ≠ xjk. Thus, for two-level balanced designs the formula (1.1) can be simplified to
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whereϑij = ♯

(i, j) : xik = xjk, k = 1, 2, . . . ,m


,
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of the set A.
From (2.1) we will give the lower bound of [MD(D)]2 depends on the fact in the following lemma.

Lemma 1 (Elsawah and Qin, 2015c). Suppose
n

i=1 zi = c and zi’s are nonnegative, then for any positive γ , we have
n

i=1

γ zi ≥ γ σ (p + qγ ),

where p and q are integers such that p+ q = n, σ = ⌊
c
n⌋, pσ + q(σ +1) = c and ⌊ε⌋means the largest integer contained in ε.

Now, from (2.1) and Lemma 1 after simple arrangements as in Elsawah and Qin (2015a), we have the following lower
bound of [MD(D)]2.

Theorem 1. For any design D ∈ U(n; 2m), let 2ℓ = n, α + β = n(n − 1), δ =
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and αδ + β(δ + 1) = nm(ℓ− 1).

Then, we have

[MD(D)]2 ≥ LB2:1,

where

LB2:1 =
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Proof. Since
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j≠i ϑij = nm(ℓ− 1) is a constant for any balanced design D ∈ U(n; 2m), from Lemma 1, it is straight-

forward to show
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, which completes the proof.

Recently, Zhou et al. (2013) and Ke et al. (2015) obtained the following lower bounds of [MD(D)]2 for two-level balanced
designs respectively.

Proposition 1 (Zhou et al., 2013). For any design D ∈ U(n; 2m), let ωn,i = n (mod 2i). Then, we have

[MD(D)]2 ≥ LB2:2,
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