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a b s t r a c t

The Berry–Esseen bounds for two estimators of the percentile residual life function are es-
tablished. The bound for the kernel estimator is shown sharper than in the previous work.
The obtained bounds are applied to study the relative deficiency of the proposed estima-
tors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The mean residual life function (MRLF) of a random variable T at time t , which is defined by E(T − t|T > t), has been
frequently used in the fields of biometry, actuarial studies and reliability. It is a very useful tool to describe the remaining
life of a subject given that the subject has survived up to time t . However, Schmittlein andMorrison (1981) pointed out that
the MRLF has a number of practical drawbacks. For example, the estimated mean residual life may be unstable due to the
influence of outliers, and the MRLF even may not exist in some cases. Therefore, as an alternative, Haines and Singpurwalla
(1974) originally introduced the percentile residual life function (PRLF).

Let F be the distribution function of T with support (0, bF ), where bF = sup{t > 0 : F(t) < 1} 6 ∞. Let Q be the
corresponding quantile function with Q (p) = inf{t : F(t) ≥ p} for 0 < p < 1 and Q (0) = 0, Q (1) = bF . For 0 < p < 1, the
(1 − p) PRLF at t is defined as

R(p)(t) = Q (1 − p(1 − F(t))) − t. (1.1)

Suppose thatX1, X2, . . . , Xn are identically and independently distributed samples from F . Then, a natural estimator ofR(p)(t)
is its empirical analog

R(p)
n (t) = Qn(1 − p(1 − Fn(t))) − t, (1.2)

where Fn and Qn are the sample distribution function and the sample quantile function respectively, and Qn(1) = X(n)

with X(n) = max{X1, X2, . . . , Xn}. Csörgő and Csörgő (1987) showed that R(p)
n (t) is uniformly (in t and p) consistent and
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√
n(R(p)

n (t) − R(p)(t))
D
→ N(0, σ 2(p, t)), where

D
→ denotes convergence in distribution, and

σ 2(p, t) =
p(1 − p)(1 − F(t))

f 2(Q (1 − p(1 − F(t))))
.

However, considering efficiency, numerous authors suggest kernel type estimator to substitute the empirical one. For exam-
ple, Parzen (1979), Reiss (1981), Padgett (1986), Sheather and Marron (1990), and Xiang (1995b), among others, proposed
the kernel smoothing distribution function and quantile function respectively. For the PRLF, the kernel type estimator is of
the form

R(p)
n (t) = h−1

n

 1

0
R(u)
n (t)K


u − p
hn


du, (1.3)

where K(·) is a kernel function, and hn is a sequence of bandwidths satisfying hn → 0 as n → ∞. Under some general
conditions, Zhao et al. (submitted for publication) showed thatR(p)

n (t) is also asymptotically normally distributed with the
same variance function σ 2(p, t).

Hodges and Lehmann (1970) firstly introduced the conception of deficiency for comparing two different estimating
procedures. Suppose a less effective procedure requires kn observations to give equally good performance as a statistical
procedure based on n observations. The ratio e = limn→∞ n/kn which is known as asymptotic relative efficiency is the most
common quantity used for this comparison. However, in many important statistical problems, e equals 1. In this situation,
the limit value d = limn→∞(kn − n) becomes a useful measure due to that d summarizes the comparison more revealingly
than e. Hodges and Lehmann (1970) named d as asymptotic deficiency. The deficiencies of empirical distribution (quantile)
estimator with respect to a type of kernel estimators under the criteria of equal mean squared error, mean absolute error
and covering probability have been established by many authors. A short and incomplete list includes Falk (1984, 1985),
Xiang (1995a,b), Lemdani and Ould-Saïd (2003) and Zhao et al. (2011, 2013).

In this paper, we first establish two Berry–Esseen theorems for R(p)
n (t) andR(p)

n (t) respectively. Based on these two theo-
rems, we give the relative deficiency of R(p)

n (t) with respect toR(p)
n (t) under the criterion of equal covering probability. The

paper is organized as follows. Section 2 gives the main results. In Section 3, we study the deficiency of the sample estima-
tor with respect to its kernel smoothing counterpart and provide some simulation results. Section 4 gives some concluding
remarks. The proofs of the main results are deferred to Appendix A.

2. Main results

We assume that the functions F(·), K(·) and Q (·) satisfy the following conditions:

A1. For fixed p and t , F has a positive continuous density f and a bounded second derivative F (2) in a neighborhood of
1 − p(1 − F(t));

A2. K(x) is Lipschitz of order 1 and has compact support on [−1, 1];
A3. K(x) is a kernel function of (r + 1)th order with r ≥ 1. Hence,

 1
−1 K(x)dx = 1,

 1
−1 x

jK(x)dx = 0, for j = 1, . . . , r , and 1
−1 x

r+1K(x)dx = cr , where cr is a constant;
A4. For fixed p and t , Q (·) has a bounded (r + 1)th derivative in a neighborhood of 1 − p(1 − F(t));
A5. nh2(r+1)

n → 0 as n → ∞.

The following two theorems give the Berry–Esseen bounds for the empirical estimator and the kernel estimator of the
percentile residual life function respectively.

Theorem 1. Assume that assumption (A1) holds. Then, for 0 < p < 1, 0 6 t < bF , as n → ∞,

sup
−∞<x<∞

P
√

n(R(p)
n (t) − R(p)(t))
σ (p, t)

6 x


− Φ(x)

 = O(n−
1
2 ), (2.1)

where Φ(·) is the d.f. of standard normal distribution.

To give the Berry–Esseen bound forR(p)
n (t), we denote

Ωn1 =
1

√
nhn


∞

t
K

 1−F(x)
1−F(t) − p

hn


(1 − F(x))B(F(t))

(1 − F(t))2
dx, (2.2)

Ωn2 = −
1

√
nhn


∞

t
K

 1−F(x)
1−F(t) − p

hn


B(F(x))
1 − F(t)

dx, (2.3)
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