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a b s t r a c t

We introduce a new method for sampling from the Wishart distribution by representing
the Wishart distributed randommatrix as a function of independent multivariate normal-
gamma random vectors. An efficient monotone data augmentation (MDA) algorithm is
developed for Bayesian multivariate linear regression. For longitudinal outcomes, the
proposed method is easier to implement and interpret than that based on Bartlett’s
decomposition. The proposed algorithm is illustrated by the analysis of an antidepressant
trial.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The data augmentation (DA) algorithm developed by Tanner and Wong (1987) has been widely used to handle missing
data in Bayesian inference. Themethod is useful if the posterior distribution f (φ|Yo) of the parameters φ given the observed
data Yo is difficult to work with, but it is easy to sample from the augmented data posterior f (φ|Yo, Ym), where Ym denotes
the unobserved data or latent variables. This DA algorithm iterates between an imputation I-step, in which the missing data
Ym are imputed given the current draw of the parameters φ, and a posterior P-step, in which the parameters φ are generated
from f (φ|Yo, Ym) given the current imputed data Ym.

There are two strategies to implement the DA for incomplete longitudinal data. Themonotone data augmentation (MDA)
approach imputes only intermittent missing data (i.e. the missing value is followed by an observed value) that destroy
monotone missing data pattern while the full DA approach imputes all missing data in the I-step. The MDA algorithm is
superior in the sense that it imputes fewermissing values in each iteration, and converges fasterwith smaller autocorrelation
between posterior samples (Schafer, 1997; Liu, 1995). The MDA method is attractive in real applications since the amount
of intermediatemissing data is generally small in a typical study. TheMDA algorithms have been developed for multivariate
normal distribution (Schafer, 1997; Liu, 1993) andmultivariate linear regression (Liu, 1996). Liu (1995, 1996) also considered
MDA for robust inference based on multivariate t or other non-normal distributions.

This note shows that theWishart distributed randommatrix can be represented as a function of independentmultivariate
normal-gamma variables, and this suggests an alternative way for sampling from the Wishart distribution. We propose a
MDA algorithm for multivariate linear regression based on the new decomposition of a Wishart matrix. Unlike the MDA
algorithms developed by Schafer (1997) and Liu (1993, 1995, 1996), our method allows the use of informative prior on both
the covariance matrix and regression coefficients. Although we use more complex prior distribution, the corresponding
posterior distribution has simpler expression than that given by Liu (1996). Liu (1993, 1995, 1996) approaches rely on
Bartlett’s decomposition, and require organizing the longitudinal data in a time-reverse order. Compared to Liu’s work,
our method is easier to interpret and implement.
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The rest of the paper is organized as follows. Section 2 introduces a new method for sampling from the Wishart dis-
tribution. The MDA algorithm for Bayesian multivariate linear regression is presented in Section 3. Section 4 illustrates an
application of the proposed method to an antidepressant trial.

2. A newmethod for generating Wishart randommatrices

In Bayesian statistics, the Wishart distribution is often used as a conjugate prior for the inverse of a multivariate normal
covariance matrix. This section shows that a p-dimensional Wishart matrix can be written as a function of p independent
multivariate normal-gamma random vectors, and describes a new method for generating the Wishart randommatrix.

LetΣ be a p×p random symmetric positive definitematrix. Let A be a p×p fixed positive definitematrix. ThenΣ follows
an inverse Wishart distribution Σ ∼ W−1(A, n0) if the probability density function (pdf) of Σ is given by

f (Σ) ∝ |Σ |
−

n0+p+1
2 exp


−

1
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
,

or equivalently Ω = Σ−1 has a Wishart distribution Ω ∼ W(A−1, n0)

f (Ω) ∝ |Ω|
n0−p−1
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
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tr(AΩ)


.

Let Ω = H ′H and A = L−1(L−1)′, where H = (hij) and L = (lij) are low triangular matrices. Let the first k × k leading
submatrix of A and L be denoted respectively by Ak and Lk. Then Ak = L−1

k (L−1
k )′. Let hk = (hk1, . . . , hkk)

′. Appendix A.1
shows that the distribution of H is given by

f (h1, . . . , hp) ∝

p
k=1

hn0−p+k−1
kk exp
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kAkhk


. (1)

Thus hk’s are independent. The following lemma shows an efficient way to generate hk’s and Ω = H ′H . The proofs of all
lemmas in this note will be deferred to Appendix A.1.

Lemma 1. (a) Let t = (t1, . . . , tm)′ and D = C−1(C−1)′, where C is an m × m lower triangular matrix. If tj ∼ N(0, 1) for
j < m, t2m ∼ χ2

e+1, and tj’s are independent, the distribution of h = (h1, . . . , hm)′ = C ′t is given by

f (h) ∝ he
m exp


−

1
2
h′Dh


. (2)

(b) Let γ = h2
m, βj = −hj/hm for j < m, β = (β1, . . . , βm−1)

′, and β̃ = (−β′, 1)′. Let D =


Dm−1 dm
d′
m dmm


and

C =


Cm−1 0
c ′
m cmm


. If h = (h1, . . . , hm)′ = hmβ̃ is distributed as (2), the joint distribution of (β, γ ) is given by

f (β, γ ) ∝ γ
e+m−2

2 exp

−

γ

2
β̃

′

Dβ̃

. (3)

The marginal distribution of γ is γ ∼ s−1χ2
e+1, and the conditional distribution of β given γ is normal with mean

D−1
m−1dm = −c−1

mmcm, and variance (γDm−1)
−1

= γ −1C ′

m−1Cm−1, where s = dmm − d ′
mD

−1
m−1dm = c−2

mm.

(c) Let β(1) and β(2) denote respectively the first w and last m − 1 − w elements of β, and β̃
(2)

= (−β(2)′, 1)′. Suppose D can
be partitioned as D =


D11 D12
D21 D22


, where the size of D11 is w × w. If the distribution of (β, γ ) is given by (3), the marginal

distribution of (β(2), γ ) is

f (β(2), γ ) ∝ γ
m+e−2−w

2 exp

−

γ

2
β̃(2)′(D22 − D21D−1

11 D12)β̃
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,

and the conditional distribution of β(1) given (β(2), γ ) is N

D−1
11 D12β̃

(2)
, (γD11)

−1

.

Lemma 1(a) implies that hk can be generated as hk = L′

ktk, where tk = (tk1, . . . , tkk)′, tkj ∼ N(0, 1) for j < k, t2kk ∼ χ2
n−p+k

and tij’s are independent (when k = 1, h1 ∼ l11


χ2
n−p+1 is a scalar). The Wishart matrix can be generated as Ω = H ′H ,

where T =

t11 0 · · · 0
t21 t22 0 0

· · ·

tp1 tp2 · · · tpp

 and H = TL.

Lemma 1(b) indicates that hk can be reparameterized as multivariate normal-gamma random variables, where γk = h2
kk

follows a Gamma or Chi-square distribution, and the conditional distribution of βk = −(hk1, . . . , hk,k−1)
′/hkk given γk is
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