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a b s t r a c t

Wepropose theGaussian quasi-maximum likelihood estimator (QMLE) to detect and locate
multiple volatility shifts. Our Gaussian QMLE is shown to be consistent under suitable
conditions and the rate of convergence is provided. It is also shown that the binary
segmentation procedure provides a consistent estimation for the number of volatility
shifts.
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1. Introduction

In the analysis of time-varying volatility of financial time series, high persistence in volatility has beenwidely recognized
as one of themost prominent features. To capture such high persistence, the integratedGARCHmodelswere once introduced
by Engle and Bollerslev (1986). However, some authors argued that high persistence may occur due to structural breaks in
volatility. For relevant references, we refer to Lamoureux and Lastrapes (1990), Mikosch and Stărică (2004) and Hillebrand
(2005). Besides, it has been also revealed that the existence of volatility shifts can result in spurious long range dependence
in volatility (see, for example, Klemeš (1974), Teverovsky et al. (1999), Diebold and Inoue (2001), Mikosch and Stărică
(2004) and references therein). Accordingly, it has been in agreement that structural breaks in volatility should be taken
into consideration when modeling the volatility of financial time series.

The problem of detecting the change points, or structural breaks has been studied for decades in the context of changes
in mean. Among many others, we will refer to Csörgő and Horváth (1997), Perron (2006), Aue and Horváth (2013) and
references therein for comprehensive review. Recently, with a remarkable attention to volatility shifts of financial time
series, detecting and locating structural changes in volatility has attracted many researchers. For example, Kokoszka and
Leipus (2000) suggested a CUSUM type change-point estimator in ARCH models with a single volatility shift. Andreou
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and Ghysels (2002) conducted an extensive simulation study to compare the performance of existing methods for various
multiple volatility shifts. Davis et al. (2008) considered multiple breaks detection for a class of segmented GARCH processes
based on the minimum description length algorithm.

This paper introduces theGaussian quasi-maximum likelihood estimator (QMLE) to find the location ofmultiple volatility
shifts and the binary segmentation procedure to estimate the number of volatility shifts. Our proposed method is very
straightforward and easy to implement. From a theoretical viewpoint, our Gaussian QMLE is shown to be consistent and
converges in an order of sample size, namely n-consistent. It is also shown that the binary segmentation procedure provides
a consistent estimation for the number of volatility shifts. Monte Carlo simulations support that our proposed method
performs reasonably well even for non-Gaussian settings.

2. Estimating the locations of multiple volatility shifts

We consider the following volatility shifts model. For a set of break fractions 0 =: λ0 < λ1 < · · · < λR < λR+1 := 1, let

rt = ri,t , if [nλi] < t ≤ [nλi+1], σ 2
i = Er2i,1 < ∞, for i = 0, . . . , R, (2.1)

where {(r0,t , . . . , rR,t) : t ∈ Z} is strictly stationary and ergodicwithmean zero. It is assumed that each σ 2
i is strictly positive

and σ 2
i−1 ≠ σ 2

i for every i = 1, . . . , R. In financial applications, {rt} usually represents a series of log-returns with R volatility
shifts, and each [nλi] denotes the ith break point. Furthermore, we will write λ◦

1, . . . , λ
◦

R as the true locations of multiple
volatility shifts satisfying

λ◦

i+1 − λ◦

i > ς0 for each i = 0, . . . , R,

for a sufficiently small number ς0 > 0. The true volatility on an interval ([nλ◦

i ], [nλ
◦

i+1]] is denoted by vi := Er2i,0,
i = 0, . . . , R. In practice, we observe {r1, . . . , rn} with unknown number of volatility shifts. Here, we will consider the
estimation of λ◦

1, . . . , λ
◦

R when R is known. Statistical inference on the unknown number of volatility shifts Rwill be discussed
in Section 3.

The idea behind our proposed estimator is very straightforward. Suppose that {rt} in (2.1) are independent observations
from Normal distribution. Then, the negative log-likelihood is given by

L(λ1, . . . , λR, σ
2
0 , . . . , σ 2

R ) =

R
i=0

[nλi+1]
t=[nλi]+1


r2t
σ 2
i

+ log σ 2
i


. (2.2)

By minimizing L with respect to nuisance parameters σ 2
0 , . . . , σ 2

R , that is, solving ∂L/∂σ 2
i = 0, i = 0, . . . , R, we obtain

that

σ 2
i =

1
[nλi+1] − [nλi]

[nλi+1]
t=[nλi]+1

r2t . (2.3)

By plug-in (2.3) to (2.2), a profile likelihood becomes

L(λ1, . . . , λR,σ 2
0 , . . . ,σ 2

R ) =

R
i=0

([nλi+1] − [nλi])


1 + log

1
[nλi+1] − [nλi]

[nλi+1]
t=[nλi]+1

r2t


. (2.4)

Therefore, we obtain the GaussianMLE byminimizingLwith respect to (λ1, . . . , λR). For dependent observations {rt}, (2.2)
divided by sample size n can be interpreted as the method of moment estimator of

R
i=0


1
σ 2
i

 λi+1

λi

z(λ)dλ + (λi+1 − λi) log σ 2
i


, z(λ) =

R
i=0

viI (λ◦

i < λ ≤ λ◦

i+1).

Since the counterpart is minimized at (λ1, . . . , λR) = (λ◦

1, . . . , λ
◦

R) and (σ 2
0 , . . . , σ 2

R ) = (v0, . . . , vR) (cf. the proof of
Theorem 1), the estimator minimizing L is reasonable.

Finally, we define our Gaussian QMLE as

(λ̂1, . . . , λ̂R) := argmin {Mn(λ1, . . . , λR) : λ ∈ DR} , (2.5)

where

Mn(λ) :=

R
i=0

Ln(λi, λi+1),

Ln(λi, λi+1) := (λi+1 − λi)


1 + log

1
n(λi+1 − λi)

[nλi+1]
t=[nλi]+1

r2t


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