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a b s t r a c t

We propose an empirical likelihood method to test whether the coefficients in a possibly
high-dimensional linear model are equal to given values. The asymptotic distribution of
the test statistic is independent of the number of covariates in the linear model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Regressionmodel is a commonly employed technique to model the relationship between responses and covariates. Con-
sider the following classical and also the simplest linear regression model

Yi = βTXi + ϵi, i = 1, . . . , n, (1)

where β = (β1, . . . , βp)
T is the vector of unknown parameters, X1 = (X1,1, . . . , X1,p)

T , . . . , Xn = (Xn,1, . . . , Xn,p)
T are

independent and identically distributed (iid) random vectors, and ϵ1, . . . , ϵn are iid random variables with zero mean and
variance σ 2 with ϵi’s being independent of Xi’s. Statistical inference for β can be based on either least squares estimator
or M-estimator when p is fixed. When p depends on the sample size n and goes to infinity as n → ∞, Portnoy (1984,
1985) studied the consistency and asymptotic normality ofM-estimators for β , which requires that p cannot be too large in
comparison with the sample size.

Statistical inference for the linear model (1) is needed for the case when p is of an exponential order of n, motivated by
the studies in bioinformatics. To deal with the case when many of βi’s are zero (sparsity), one first selects variables with
nonzeroβ ′

i s and thenmakes statistical inference for the selected nonzeroβ ′

i s. It is not surprising that the order of the number
of nonzero β ′

i s cannot be larger than the optimal one in Portnoy (1985). We refer to Bradic et al. (2011) for more details and
references on the ultrahigh dimensional situation. Sparse estimators like the famous Lasso estimator (Tibshirani, 1996) and
its extensions (Zou, 2006; Meinshausen, 2007) are very powerful in the setting of sparse alternative. Meinshausen et al.
(2009) studied the variable selection for high-dimensional linear regression models.

On the other hand, when the number of nonzero β ’s is large, new techniques are needed. In contrast to the sparse model
and variable selection techniques, we study a general setting in this paper. We consider the problem of testing H0 : β = β0
against Ha : β ≠ β0 for a given value β0 ∈ Rp when p is either fixed or goes to infinity as n → ∞. In particular, we are
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interested in the case when the alternative hypothesis has a dense shift (i.e. small shifts inmany dimensions instead of large
shifts in a few dimensions). When p is fixed, the traditional test is Hotelling’s T 2 test, based on the test statistic

HT =
1
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T


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XiXT
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2. It is known thatHT
d

→ χ2
p as n → ∞.However,when

p is large, finding the inverse matrix in (2) becomes problematic. To overcome such difficulty, we consider the empirical
likelihood method.

As a powerful nonparametric likelihood approach, empirical likelihood test is another useful method. More specifically,
define the traditional empirical likelihood function for β as

L(T )
n (β) = sup
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
.

Under some regularity conditions, one can show that theWilks theorem holds, i.e.,−2 log L(T )
n (β0) converges in distribution

to a chi-square limit with p degrees of freedom. Therefore, the empirical likelihood test can be constructed by using the test
statistic −2 log L(T )

n (β). See Owen (2001) for more details on empirical likelihood methods. However, the maximization in
computing L(T )

n (β) becomes nontrivial and even unavailable when p is large; see Chen et al. (2008) for discussions on this
phenomenon. Empirical likelihood method for high dimensional data can be found in Chen et al. (2009), Hjort et al. (2009)
and Peng and Schick (2013).

In this paper we propose a new empirical likelihood test for testing H0 : β = β0 against Ha : β ≠ β0 regardless of fixed
or divergent p. We begin with an estimator of θ = (β0 − β)TΣ2(β0 − β) where Σ = E(X1XT

1 ). It is obvious that when Σ is
positive definite, testing H0 : β = β0 against Ha : β ≠ β0 is equivalent to testing H0 : θ = 0 against Ha : θ ≠ 0. To find such
an estimator, we split the data into two parts and introduce an empirical likelihood test based on this estimator. It turns out
that the newmethodworks for both fixed and divergent p. The sample splittingmethodwas also used and discussed in Peng
et al. (in press) and Wang et al. (2013), where they proposed empirical likelihood tests and jackknife empirical likelihood
tests for high-dimensionalmeans. Othermethods based on sample splitting techniques for variable selectionwere discussed
in Wasserman and Roeder (2009) and Meinshausen et al. (2009). Note that the purpose of sample splitting in this paper is
for testing without variable selection, and hence it is different from their methods.

We organize this paper as follows. Section 2 presents the newmethodology andmain results. A simulation study is given
in Section 3. All proofs are put in Section 4.

2. Methodology

We start by splitting the sample into two groups to get a random sample with mean being θ = (β0 − β)TΣ2(β0 − β),
where Σ = E(X1XT

1 ). Putm = [n/2], the integer part of n/2, and define X̃i = Xm+i, Ỹi = Yi+m, ϵ̃i = ϵi+m,

Wi(β) = (YiXi − XiXT
i β)T (ỸiX̃i − X̃iX̃T

i β)

for i = 1, . . . ,m. Then
EWi(β0) = E[(XiXT

i (β0 − β) + Xiϵi)
T (X̃iX̃T

i (β0 − β) + X̃iϵ̃i)] = (β0 − β)TΣ2(β0 − β).

When Σ is positive definite, testing H0 : β = β0 against Ha : β ≠ β0 is equivalent to testing H0 : EW1(β0) = 0 against
Ha : EW1(β0) ≠ 0. This motivates us to apply the empirical likelihood method in Qin and Lawless (1994) to the estimat-
ing equation EW1(β0) = 0. However this direct application results in a poor power in general by noting that EW1(β0) =

O(∥β − β0∥
2) instead of O(∥β − β0∥) when ∥β − β0∥ is small, where ∥ · ∥ denotes the L2 norm of a vector. The explanation

of this weak power is discussed in Peng et al. (in press).
To improve thepower,wepropose to addonemore linear equationEW ∗

1 (β0) = 0whereEW ∗

1 (β0) is close toO(∥β−β0∥1)
where ∥β − β0∥1 is the L1 norm, and thus it captures the small change of β − β0. More specifically, define

W ∗

i (β) = (YiXi − XiXT
i β)T1p + (ỸiX̃i − X̃iX̃T

i β)T1p

for i = 1, . . . ,m, where 1p = (1, 1, . . . , 1)T ∈ Rp, and then define the empirical likelihood function for β as

Ln(β) = sup
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The following theorem shows that the Wilks theorem holds for the above empirical likelihood method. We use tr(A) to
denote the trace of a matrix A.

Theorem 1. Let β0 be the true value of the parameter β . Assume Σ is positive definite and there exists some δ > 0 such that

E|XT
1 X̃1|

2+δ

{tr(Σ2)}(2+δ)/2


E|ϵ1|

2+δ

σ 2+δ

2

= o(mδ/2), (3)
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