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a b s t r a c t

We consider a stochastic image restoration model proposed by A. Gibbs (2004), and give
an upper bound on the time it takes for a Markov chain defined by this model to be ϵ-close
in total variation to equilibrium. We use Gibbs’ result for convergence in the Wasserstein
metric to arrive at our result. Our bound for the time to equilibrium of similar order to that
of Gibbs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A.L. Gibbs (Gibbs, 2004) introduced a stochastic image restorationmodel for anN pixel greyscale image x = {xi}Ni=1. More
specifically, in this model each pixel xi corresponds to a real value in [0, 1], where a black pixel is represented by 0 and a
white pixel is represented by the value 1. It is assumed that in the real-world space of such images, each pixel tends to be
like its nearest neighbours (in the absence of any evidence otherwise). This assumption is expressed in the prior probability
density of the image, which is given by

πγ (x) ∝ exp


−


⟨i,j⟩

1
2


γ

xi − xj

2 (1.1)

on the state space [0, 1]N , and is equal to 0 elsewhere. The sum in (1.1) is over all pairs of pixels that are considered to
be neighbours, and the parameter γ represents the strength of the assumption that neighbouring pixels are similar. Here
images are assumed to have an underlying graph structure. The familiar 2-dimensional digital image is a special case, where
usually one might assume that the neighbours of a pixel xi in the interior of the image (i.e. xi not on the boundary of the
image) are the 4 or 8 pixels surrounding xi, depending on whether or not we decide to consider the 4 pixels diagonal to xi.

The actual observed image y = {yi}Ni=1 is assumed to be the result of the original image subject to distortion by random
noise, with every pixel modified independently through the addition of a Normal


0, σ 2


random variable (hence yi ∈ R).

The resulting posterior probability density for the original image is given by

πposterior (x|y) ∝ exp


−

N
i=1

1
2σ 2 (xi − yi)2 −


⟨i,j⟩
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2


γ

xi − xj

2 (1.2)

supported on [0, 1].
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Samples from (1.2) can be approximately obtained by means of a Gibbs sampler. In this instance, the algorithm works
as follows: at every iteration the sampler chooses a site i uniformly at random, and replaces the value xi at this location
according to the full conditional density at that site. This density is given by

πFC

xi|y, xk≠i


∝ exp



σ−2

+ niγ
2


2
·


xi −


σ−2

+ niγ
2−1


σ−2yi + γ 2


j∼i

xj

2
 (1.3)

on [0, 1] and 0 elsewhere. Here ni is the number of neighbours the ith pixel has, and j ∼ i indicates that the jth pixel is one of
them. It follows that (1.3) is a restriction of a Normal


σ−2

+ niγ
2
−1 

σ−2yi + γ 2
j∼i xj


,

σ−2

+ niγ
2
−1

distribution

to the set [0, 1].
The bound on the rate of convergence to equilibrium given in Gibbs (2004) is stated in terms of the Wasserstein metric

dW . This is defined as follows: if µ1 and µ2 are two probability measures on the same state space which is endowed with
some metric d, then

dW (µ1, µ2) := inf E [d (ξ1, ξ2)]

where the infimum is taken over all joint distributions (ξ1, ξ2) such that ξ1 ∼ µ1 and ξ2 ∼ µ2.
Another commonly used metric for measuring the distance of a Markov chain from its equilibrium distribution is the

total variation metric, defined for two probability measures µ1 and µ2 on the state space Ω by

dTV (µ1, µ2) := sup |µ1 (A) − µ2 (A)|

where the supremum is taken over all measurable A ⊆ Ω .
The underlying metric on the state space used throughout (Gibbs, 2004) (and hence used implicitly in the statement

of Theorem 1) is defined by d (x, y) :=


i ni |xi − zi|. This is a non-standard choice for a metric on [0, 1]N , however it is
comparable to the more usual l1 taxicab metric d̂ (x, y) :=


i |xi − zi| since

nmin · d̂ (x, y) ≤ d (x, y) ≤ nmax · d̂ (x, y)

where nmax := maxi {ni} and nmin := mini {ni}. Hence, for two probability measures µ1 and µ2 on [0, 1]N , it follows
immediately that

nmin · dŴ (µ1, µ2) ≤ dW (µ1, µ2) ≤ nmax · dŴ (µ1, µ2)

where dŴ and dW are the Wasserstein metrics associated with d̂ and d respectively.
If Θ1 and Θ2 are two random variables on the same state space with probability measuresm1 andm2 respectively, then

we shall write

dW (Θ1, Θ2) := dW (m1,m2) and dTV (Θ1, Θ2) := dTV (m1,m2) .

Gibbs (2004) shows that

Theorem 1 (Gibbs, 2004). Let X t be a copy of the Markov chain evolving according to the Gibbs sampler, and let Z t be a chain
in equilibrium, distributed according to πposterior . Then if [0, 1]N is given the metric d (x, y) :=


i ni |xi − zi|, it follows that

dW

X t , Z t


≤ ϵ whenever

t > ϑ (ϵ) :=

log


ϵ
nmaxN


log


1 − N−1


1 + nmaxγ 2σ 2

−1
 . (1.4)

By the comments preceding the statement of this theorem, (1.4) remains true with the standard l1 metric on the state
space, if we replace ϵ by nmin · ϵ on the right-hand side of this inequality.

Remark. Eq. (1.4) appears in Gibbs (2004) with the denominator being log

N − 1/N + nmaxN−1γ 2


σ−2

+ nmaxγ
2
−1

. It

is obvious from their proof that this is a typographical error, and that the term N − 1/N was intended to be (N − 1) /N .

It is not difficult to see that dTV is a special case of dW when the underlying metric is given by d (x, z) = 1 if x ≠ z. In general
however, convergence in dW does not imply convergence in dTV , and vice versa (see Madras and Sezer (2010) for examples
where convergence fails, as well as some conditions under which convergence in one of dW , dTV implies convergence in the
other). The purpose of this paper is to obtain a bound in dTV by making use of (1.4) and simple properties of the Markov
chain, without specifically engaging in a new study of the mixing time.

Let Xt be a copy of the Markov chain, and let µt be its probability distribution. Furthermore, define ζi :=
σ−2

+ niγ
2
−1 

σ−2yi + γ 2nmax

, ζ := max {|ζi|} and σ̃i

2
=

σ−2

+ niγ
2
−1. Ifπ is the posterior distributionwith density

function πposterior , we show that
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