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a b s t r a c t

For a continuous-time Markov process, occasionally, only discrete-time observations are
available. For a simple sample of homogeneous Markov jump processes with an absorbing
state, observed each on a stochastic grid of time points, we establish asymptotic normality
of the maximum likelihood estimator and close the gap in Kremer and Weißbach (2013).
By showing that the solution of the Kolmogorov backward equation system is continuous
differentiable, we can apply results for M-estimators.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Likelihood inference for the transition intensities of a discrete-state Markov jump process, based on continuous-time
observations, is well established (see e.g. Billingsley, 1961; Küchler and Sørensen, 1997, among others). However, that
continuous-time phenomena can only be observed at discrete time points has lately aroused some interest. For Markov
jump processes, there are few results for the discretely-monitored processes. For instance, Keiding (1974, 1975) considers
the estimation problem for a discretely-monitored birth process and birth-and-death process. Bladt and Sørensen (2005)
estimate the intensity matrix from a discretely-monitoredmultiple Markov jump process. Dehay and Yao (2007) is a closely
related work; their method is based on an explicit expansion of the transition matrix of the sampled chain. Furthermore,
Bladt and Sørensen (2005) and Dehay and Yao (2007) prove consistency of the maximum likelihood estimator (MLE)
provided that the process is ergodic.

A contemporary application ofMarkov jumpprocesses is that of credit rating trajectories (see e.g. Jarrowet al., 1997; Bladt
and Sørensen, 2009). It is important to note that a rating system usually includes a default class, which is an absorbing state,
disabling ergodic theory as in Bladt and Sørensen (2005) and Dehay and Yao (2007) for an asymptotic analysis. Provided that
the parameters are identifiable Kremer andWeißbach (2013) establish consistency using the continuousmapping theorem.
We prove asymptotic normality of the MLE using properties of differential equations, namely continuity and Lipschitz-
continuity, and a theorem on M-estimators by van der Vaart (1998) and close the gap in Kremer and Weißbach (2013).

The paper is organized as follows. Section 2 describes the general model with the corresponding likelihood. We establish
asymptotic normality of the maximum likelihood estimator in Section 3.

2. Notation and likelihood

Consider the homogeneous continuous-time discrete-state Markov process X = {X(t), t ∈ [0, T ]}, T := [0, T ],
T < ∞, with ordered states 1, . . . ,m, defined on a compact andmetrical probability space (Ω, F, P)with filtration (Ft)t∈T .
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Additionally, we assume that the states 1, . . . ,m − 1 can be reached from each other. Moreover, we assume that m is an
absorbing state and can be reached from all other states. X(0) has a multinomial distribution on the states 1, . . . ,m − 1.
Additionally, the infinitesimal generator Q = (θhj)h,j=1,...,m with transition intensities θhj for h ≠ j, h = 1, . . . ,m − 1,
j = 1, . . . ,m and 0 for h = m, j = 1, . . . ,m, determines the process. Note that θhh := −

m
j=1
j≠h

θhj for h = 1, . . . ,m − 1.

Let the vector θ ∈ Θ = Rm2
−2m+1 contain all positive non-redundant items of Q , in any order. We refer to θ0 as the true

parameter and assume that identically distributed copiesXi, i = 1, . . . , n ofX are independent. Quite flexibly let the process
path be observed on a stochastic grid of time points Ti,1, Ti,2, . . . , Ti,Ni(T ) for each process. As a model, we assume that there
is an independent process Ni which has a finite expected number of jumps with rate one, e.g., the homogeneous Poisson
process or Cox process. We refer to this process as the observation process. Furthermore, we assume that the observation
process is non-informative and independent of the Markov process Xi. We interpret each jump Ti,z, z = 1, . . . ,Ni(T ) of the
observation processNi as a time point at which we observe theMarkov process Xi. Not that we allow a different observation
process for each Markov process. Hence, we observe processes Yi =


Xi(Ti,z), z = 1, . . . ,Ni(T )


, i = 1, . . . , n. The log

likelihood conditional on Ti,z = ti,z,Ni(T ) = ni, and Xi(0) is

ln L(θ|Y1 = y1, . . . , Yn = yn) =

n
i=1

ni−1
z=1

ln p(xi(ti,z), xi(ti,z+1), ti,z+1 − ti,z, θ), (1)

where p(xi(ti,z), xi(ti,z+1), ti,z+1 − ti,z, θ) is the probability, depending on θ, that the process in state xi(ti,z) at age ti,z is in
state xi(ti,z+1) after time ti,z+1−ti,z . For the detailed derivation of the log likelihoodwe refer to Kremer andWeißbach (2013)
or Bladt and Sørensen (2005). For the ease of reading, we define

Zi(θ) :=

Ni(T )−1
z=1

ln p(Xi(Ti,z), Xi(Ti,z+1), Ti,z+1 − Ti,z, θ). (2)

3. Asymptotic normality

Our aim is to prove the asymptotic normality. One of the main requirements for the estimator is to be consistent which
follows from the continuous mapping theorem (see e.g. van der Vaart and Wellner, 1996, Theorem 3.2.2) and is verified for
the present model in Kremer andWeißbach (2013). In order to apply van der Vaart (1998, Theorem 5.41, p. 68) or Liese and
Miescke (2008, Theorem 7.142, p. 370), we recall some properties of differential equations (see Coddington and Levison,
1955, Chapter 1, Section 7). In detail, we follow Walter (2000, Chapter III, Sections 10–13) and Amann (1995, Chapter 2,
Sections 6–9).

We assume in the following that D is an open subset of the finite dimensional Banach space E. E is the space of the
transition matrices without row m, stacked to vectors, and D ⊂ (ϵD, 1 − ϵD)

m(m−1), with a small ϵD ∈ R+. Furthermore,
let J be a compact interval of R, in our case the time line [ϵJ , T ], for a small ϵJ ∈ R+. Moreover, the parameter space Λ is
open in a finite dimensional Banach space, in our case Λ = (ϵΛ, ∞)(m−1)2 , for a small ϵΛ ∈ R+. Let us consider the ordinary
differential equation of the first order

x′
= f (t, x, λ) with x(t0) = ξ, (3)

where t ∈ J , x ∈ D, λ ∈ Λ. E is the image space of the mapping f : J × D × Λ → E, D(f , Λ) is the domain of the mapping
u : (t, t0, ξ , λ) → u(t, t0, ξ , λ) ∈ D, and u(t, t0, ξ , λ) is the solution of the initial value problem (3). It is well known that
we can describe (3) as an equation including an integral, namely

x = ξ +

 t

t0
f (s, x, λ)ds. (4)

A unique solution u is ensured to exist (see Walter (2000, Theorem II, p. 154) or Amann (1995, Theorem 7.6, p. 110)).
Furthermore, the solution is continuous in all variables. Next, we recall that the solution u is differentiable (see Amann
(1995, Theorem 9.2, p. 128) or Walter (2000, Proposition X, p. 160)). Furthermore, the derivative of u with respect to
D is continuous (see Walter, 2000, Proposition X, p. 160). Especially, the derivative of u with respect to Λ is continuous
(see Walter, 2000, Proposition, p. 162). In detail, the derivative of u with respect to λ has the form equal to (4) (see Walter,
2000, p. 168, formula (18))

∂u
∂λ

=

 t

t0

∂ f (s, u, λ)

∂λ
+

∂ f (s, u, λ)

∂u
∂u
∂λ

ds.

Provided that f is twice differentiable, we can apply the same conclusion again, because we have a linear integral equation
of form (4). This yields the following corollary (see Amann, 1995, Theorem 9.5, p. 133), which establishes that the function u
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