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a b s t r a c t

We consider the estimation of a semiparametric additive isotonic regression model with
error-prone covariates. We show the limiting distributions of the proposed estimators of
the parametric component as well as the functional component. A simulation study is
carried out to investigate the performance of the proposed estimators.
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1. Introduction

Consider the nonparametric isotonic regression model

Y = h(W ) + ε (1)

where Y is a response, W is a random covariate valued in RK , K ≥ 1, ε is the model error, and h(·) is a regression function
which ismonotonic in each coordinate ofW . In epidemiology area,model (1) is often used tomodel the relationship between
risk and exposure, which is unknown but believed non-decreasing with increasing exposure. Traditional nonparametric
models usually assume that h(·) is a smooth function and use the polynomial spline or the penalized least squaresmethod to
estimate h(·). Comparedwith these nonparametric approaches, an attractive property of the isotonic estimation approach is
that it is entirely data-driven and does not need to specify the smoothing parameter or the penalty parameter. This is because
the built-in monotonicity constraints allow for choosing the smoothing parameter automatically. The nonparametric
isotonic regression model has a long history and has been studied by Brunk (1958), Wright (1981), Hall and Huang (2001),
Mammen et al. (2001), Dette et al. (2006), among others.

It is well known that theremay exist curse of dimensionality in the estimation of high dimensional h(·) in model (1). One
effective way to overcome difficulties caused by curse of dimensionality is that we employ an additive structure on the high
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dimensional function h(·). Model (1) thus becomes

Y =

K
k=1

hk(Wk) + ε (2)

which is known as the nonparametric additive isotonic regression model and has been studied by Mammen and Yu (2007).
A natural extension of model (2) incorporating a linear part is the semiparametric additive isotonic regression model

Y = X⊤β +

K
k=1

hk(Wk) + ε (3)

where X = (X1, . . . , Xp)
⊤ is a p-dimensional covariate, β is a p-dimensional parameter of interest, ⊤ represents transpose.

Under model (3) with K = 1, Huang (2002) proposed least-square estimators for β and h1(·) and showed the limiting
distribution of the estimators. Cheng (2009) extendedHuang (2002)’s results to the situation thatK > 1. For other studies on
semiparametric isotonic regression model see Sun et al. (2011, 2012); Sun and Zhang (2012), among others. In applications,
X can usually not be measured exactly. It is often measured with errors. Instead of observing X , we observe Z = X + U ,
where U = (U1, . . . ,Up)

⊤ is the p-dimensional vector of measurement errors. For studies on observations with additive
errors see Cui and Li (1998), Liang et al. (1999), Cui and Kong (2006), among others.

Above all, we are interested in the semiparametric additive isotonic errors-in-variables regression model which takes
the form

Y = X⊤β +

K
k=1

hk(Wk) + ε, Z = X + U . (4)

Without loss of generality, we assume that ε is independent of (X,W1, . . . ,WK ) with mean 0 and variance σ 2, Wk(k =

1, . . . , K) ∈ W are pairwise independent, W is a closed interval [W , W ] on the real line R, where W and W are the left
endpoint and the right endpoint respectively, U is independent of (Y , X,W1, . . . ,WK , ε) with mean 0 and covariance ΣUU ,
hk(·)(k = 1, . . . , K) are non-decreasing on W . For identifiability of the regression parameter, we assume that E(hk(Wk)) =

0, k = 1, . . . , K . We also center Y and X around zero; thus E(X) is set to be zero. For identifiability of the model, we
assume that ΣUU , which may be determined by machines in experiments, is already known. Let {(Yi,W1i, . . . ,WKi, Zi), i =

1, . . . , n} be independent identically distributed observations of (Y ,W1, . . . ,WK , Z) from model (4). That is Yi = X⊤

i β +K
k=1 hk(Wki) + εi, Zi = Xi + Ui, i = 1, . . . , n. A simple estimation approach of model (4) is that we ignore the measure-

ment errors and replace X by Z . Unfortunately, the resulting estimator of β is inconsistent, and hence results in inconsistent
estimate curves for hk(Wk)(k = 1, . . . , K), as can be seen from both the form of the estimator of β and the simulation
results in the following parts of this paper. Different from the estimation procedure in Huang (2002) and Cheng (2009) in
which the estimators of the parametric and nonparametric componentswere defined synchronously and a reasonable initial
estimator of the parameter β is required in the computation algorithm, in this paper, we derive root-n consistent estimators
of β and σ 2 first. Then, based on the estimator of β , we define the least-square estimators of hk(Wk)(k = 1, . . . , K) under
monotone constraints. We prove that both the estimators of β and σ 2 are asymptotically normally distributed. We show
the asymptotic distributions of estimators of the nonparametric components, as well as the estimator’s oracle property,
which means that hk(·) can be estimated as well as it could be by an isotonic estimator as if the other nonparametric and
parametric components were known. The outline of the paper is as follows. In Section 2, we show the estimation procedure
and give the asymptotic distributions of the estimators. In Section 3, we conduct a simulation to detect the behavior of the
estimators. The proofs of the theorems are given in the Appendix.

2. Estimation procedure and main results

2.1. Estimation procedure for the parametric components

Our aim is to construct estimators for the parametric components β , σ 2 and the nonparametric components hk(·)(k =

1, . . . , K) of model (4). From model (4), it is easy to get that

Yi = Z⊤

i β +

K
k=1

hk(Wki) + εi − U⊤

i β, i = 1, . . . , n. (5)

Taking conditional expectation onW1i, . . . ,WKi respectively on both sides of (5), we have

E[Yi|Wki] = E[Zi|Wki]
⊤β + hk(Wki), k = 1, . . . , K . (6)

Subtracting the sum of the each side of (6) from the same side of (5) respectively, we get

Yi −

K
k=1

E[Yi|Wki] =


Zi −

K
k=1

E[Zi|Wki]

⊤

β + εi − U⊤

i β, i = 1, . . . , n. (7)
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