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a b s t r a c t

In this paperwe study the question of robust stabilization of infinite dimensional stochastic
systems against uncertainty induced by relatively bounded perturbations of the principal
operator determining the system.We present results on state feedback robust stabilization
with a general decay. Two examples are included to illustrate the theory.
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1. Introduction

Existence, stability and stabilizability problems of mild solutions of stochastic evolution equations (SEEs) in infinite
dimensions has been investigated by several authors, see, for example, Ahmed (1991, 1992, 2000), Da Prato and Zabczyk
(1992) and Ichikawa (1982), among others. SEEs are well-known to model stochastic processes observed in the study of
dynamic systems arising from many areas of science, engineering and finance. The aim of this paper is to study SEEs and
consider feedback control problems of unstable systems subject to uncertain perturbations of the unbounded principal
operator like A in the following model,

dx(t) = [(A + P)x(t)+ Bu(t)+ f (t, x(t))]dt + g(t, x(t))dw(t), t > 0; (1.1)
x(0) = x0, (1.2)

where P is contained in a family of unbounded operators P and u is the control. This is an uncertain stochastic dynamic
system. The uncertainty is denoted by the set P which consists of a family of relatively A-bounded perturbations. This can
be interpreted as lack of completeness of the model due to lack of knowledge of the lower order differential operators in a
PDE situation. Our main objective here is to construct a state feedback control law for the system (1.1)–(1.2) so that in the
presence of uncertain perturbation (P ∈ P ) of the unbounded operators, which may be viewed as structural perturbation,
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the system is stable in the secondmomentswith a general decay. In otherwords, the system is stable uniformlywith respect
to P ∈ P whichwe call robustness in stability. This result is new and is proved in Theorem3.6. In order to study this problem,
we need to cover some basic existence and regularity properties of solutions of the uncontrolled and unperturbed version
of the system (1.1)–(1.2) as described below:

dx(t) = [Ax(t)+ f (t, x(t))]dt + g(t, x(t))dw(t), t > 0; (1.3)
x(0) = x0. (1.4)

First we consider the question of existence and uniqueness ofmild solutions of the basic system (1.3)–(1.4) and then present
sufficient conditions for stability of themoments of the solutionwith a general decay. To prove the existence and uniqueness
of mild solutions, we use the classical Banach fixed point theorem combined with the well known theory of a stochastic
convolution integral given by Da Prato and Zabczyk (1992).

The format of the rest of the paper is as follows: In Section 2, we give the preliminaries from Ichikawa (1982) and Ahmed
(1991). The main result of the paper is established in Section 3. Section 4 deals with two examples.

2. Preliminaries

Let X, Y be a pair of real separable Hilbert spaces and L(Y , X) the space of bounded linear operators mapping Y into X .
For convenience, we shall use the notations | · | and (·, ·) for norms and scalar products for both the Hilbert spaces. Wewrite
L(X) for L(X, X). Let (Ω,F , P) be a complete probability space. A map x : Ω → X is a random variable if it is strongly
measurable. Let x : Ω → X be a square integrable random variable, that is x ∈ L2(Ω,F , P; X). The covariance operator
of the random element x is Cov[x] = E[(x − Ex) ◦ (x − Ex)], where E denotes the expectation and g ◦ h ∈ L(X) for any
g, h ∈ X is defined by (g ◦ h)k = g(h, k), k ∈ X . Then Cov[x] is a selfadjoint nonnegative trace class (or nuclear) operator
and tr Cov[x] = E|x − Ex|2, where tr denotes the trace. The joint covariance of any pair {x, y} ⊂ L2(Ω,F , P; X), is defined
as Cov[x, y] = E[(x − Ex) ◦ (y − Ey)].

Let I be a subinterval of [0,∞). A stochastic process {x}with values in X is a family of random variables x(t), t ∈ I , taking
values in X . Let Ft , t ∈ I , be a family of increasing sub σ -algebras of the sigma algebra F . A stochastic process x(t), t ≥ 0,
is adapted to Ft if x(t) is Ft measurable for all t ∈ I .

A stochastic process w(t), t ≥ 0, in a real separable Hilbert space Y is a Wiener process if (a) w(t) ∈ L2(Ω,F , P; Y )
and Ew(t) = 0 for all t ≥ 0, (b) Cov[w(t)−w(s)] = (t − s)W ,W ∈ L+

1 (Y ) is a nonnegative nuclear operator, (c)w(t) has
continuous sample paths, and (d) w(t) has independent increments. The operator W is called the incremental covariance
(operator) of the Wiener process w(t). Then w has the representation w(t) =


∞

n=1 βn(t)en, where {en} (n = 1, 2, 3, . . .)
is an orthonormal set of eigenvectors of W , βn(t), n = 1, 2, 3, . . . are mutually independent real valued Wiener processes
with incremental covariance λn > 0,Wen = λnen and trW =


∞

n=1 λn.
A semigroup {S(t), t ≥ 0} is said to be exponentially stable if there exist positive constants {M, a} such that ∥S(t)∥ ≤

Me−at , t ≥ 0,where ∥ · ∥ denotes the operator norm in L(X). IfM = 1, the semigroup is said to be a contraction semigroup.
Now we consider the system (1.3)–(1.4). Let A : D(A) ⊆ X → X be the infinitesimal generator of a strongly continuous

semigroup {S(t), t ≥ 0} in X . Let the functions f and g with f : R+
×X → X , and g : R+

×X → L(Y , X) be Borel measurable
maps.

Next, we introduce the well-known notion of a mild solution for the system (1.3)–(1.4).

Definition 2.1. A stochastic process x : [0, T ] → X defined on the probability space (Ω,F , P) is called a mild solution of
Eq. (1.3) if

(i) x is jointly measurable and Ft-adapted and its restriction to the interval [0, T ] ≡ I satisfies
 T
0 |x(t)|2dt < ∞, a.s., and

(ii) x satisfies the integral equation

x(t) = S(t)x0 +

 t

0
S(t − s)f (s, x(s))ds +

 t

0
S(t − s)g(s, x(s))dw(s), t ∈ [0, T ] a.s.

3. Robust stabilization by state feedback

In the preceding section we defined that the principal operator A is the infinitesimal generator of an exponentially stable
semigroup. We can avoid this if the system is controllable and stabilizable. We consider the question of stabilizability of
secondmoments with a polynomial decay by use of state feedback without assuming exponential stability of the semigroup
generated by the operator A. We refer to Ahmed (1991, 2000) and Ahmed and Skowronski (1994) for some earlier study on
exponential stabilizability.

3.1. Uncontrolled system

In order to carry out the program as stated, first we consider the uncontrolled system (1.3)–(1.4). We assume that x0 is
F0- measurable such that E|x0|p < ∞ for some integer p ≥ 2.
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