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a b s t r a c t

Smoothing methods for density estimators struggle when the shape of the reference
density differs markedly from the actual density. We propose a bootstrap bandwidth
selector where no reference distribution is used. It performs reliably in difficult cases and
asymptotically outperforms well known automatic bandwidths.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Suppose X1, . . . , Xn are independent and identically distributed random variables with an unknown density f (·). The
kernel density estimator (KDE) of f , based on the kernel K(·) and bandwidth h ≡ hn, is defined as

Kn(y) =
1
nh

n
i=1

K


y − Xi

h


(1.1)

where h → 0 and nh → ∞ as n → ∞. The mean integrated squared error (MISE) of Kn(·) is a global measure of accuracy
of Kn(·). It has enjoyed great popularity, especially in the context of optimal bandwidth selection of a KDE. See for instance,
Taylor (1989), Faraway and Jhun (1990) and Hall et al. (1992). In this article we consider the problem of bandwidth selection
with a view to achieve the minimum possible value of the MISE (call itM).

Bandwidth selection procedures with this goal in mind have been widely studied over the past decade and several
procedures to choose this bandwidth have been proposed in the literature. In particular, the Sheather and Jones (1991)
plug-in bandwidth (say hSJPI) and the smooth bootstrap bandwidth proposed by Cao et al. (1994) (say hCao), have been
suggested as new standard methods. See Cao et al. (1994) and Jones et al. (1996) for a detailed comparison of a number
of automatic bandwidths. The latter have suggested that bandwidths such as hSJPI be considered as the benchmark of good
performance. However, Loader (1999) observed that hSJPI often over-smooths and misses important features when given
difficult problems. As we shall see later this criticism is also relevant for hCao.
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A common feature in these bandwidth selectors is that any unknown functional T (f ) is approximated by T (fn), where
fn is another KDE using the same kernel K and a ‘‘pilot bandwidth’’ λ. Loader (1999) pointed out that these bandwidth
selectors are heavily dependent on the specification of λ. For instance in the smooth bootstrap method of Cao et al. (1994),
λ is chosen with an aim to estimate


[f (2)(x)]2dx accurately. In Jones et al. (1991), λ is selected with a view to minimize

asymptotic (relative) MSE for the selected bandwidth. In all these methods, the best choice of λ depends on some functional
of the density or its derivatives. For instance, Cao (1993) and Cao et al. (1994) have proposed the choice λ =

C
n1/7

where C
depends on


[f (3)(y)]2dy. The unknown constants in λ are usually estimated by approximating the underlying density using

a reference distribution. If this reference distribution is far removed from f , the smooth bootstrap bandwidths struggle. For
instance, Jones et al. (1991, p. 1925) have observed that for densities which are somewhat far from the Gaussian in terms of
shape, the performance of their bootstrap bandwidth selector is not so good.

The plug-in bandwidth selectors, such as hSJPI, also exhibit this demerit. In this method, the optimal choice of h is
expressed as a function of


[f (2)(x)]2dx (see Loader, 1999), which is approximated using


[f (2)
n (x)]2dx. By varying λ, a wide

range of ‘‘optimal’’ values of h can be selected. The plot of h against a broad range of values of λ is referred to as the ‘‘actual’’
relation between λ and h. To choose an appropriate value of λ, a common approach is to ‘‘assume’’ a relation between λ
and h. Plug-in methods differ with respect to the choice of this relation (see for example, Sheather and Jones, 1991). The
Sheather and Jones method uses a complicated ‘‘assumed’’ relation, based on estimating the density derivatives using a
reference normal distribution. As a consequence, if f is substantially different from a normal distribution in shape, hSJPI
suffers.

The above mentioned bandwidth selectors use some reference distribution to estimate the unknown constants in λ.
When the shape of f and the reference density differ widely, the resulting estimates perform poorly. We propose a new
smooth bootstrap method where the choice of λ does not involve any pilot estimate, and no reference distribution is used
at any stage. A smooth bootstrap bandwidth ĥ equals

ĥ = minimizer of M∗(h), h ∈ I,

where I is a compact interval and M∗
≡ M∗(h) is a smooth bootstrap estimator of M . It is defined using (another) KDE K 0

n
with kernel K 0 and bandwidth λ. See (3.2) for the definition ofM∗.

From (A.7) in the Appendix it is easy to see that for nλ → ∞ and h ∈ I ,

E|M∗(h)/M(h) − 1| = O


1

n1/(2s+1)


1
nλ

+ λ2p +


E

K 0(s)
n (y) − f (s)(y)

2
dy


.

Hence the asymptotic accuracy ofM∗ depends on the accuracy of K 0(s)
n in estimating f (s). Our choice of λ is motivated by the

following inequality, established in Lemma 1 in the Appendix. Here p, C1, C2 are constants which do not depend on f , but
depend on the kernel K 0 and the order s of the original kernel K .

E[K 0(s)
n (y) − f (s)(y)]2dy ≤

C1

nλ1+2s
+ C2λ

2p


[f (s+p)(y)]2dy.

The minimizer of the right side of the above inequality equals

λ =
C3

[f (s+p)(y)]2dy
1/(2s+2p+1) n

−1/(2s+2p+1),

where C3 is a constant which depends on K and K 0. The coefficient C3/[

[f (s+p)(y)]2]1/(2s+2p+1) varies widely depending on

the choice of f . We observe that within a class of mixed normal densities, this coefficient varies approximately from 1
9 to 1.3

depending on the choice of f . Through extensive simulations we find that

λ =
1
8
n−1/(2s+2p+1), where s, p ≥ 2,

works very well. With this choice of λ, let ĥ∗ be the bandwidth minimizing M∗ in I . This is our recommended bootstrap
bandwidth and it works well in capturing important features of a wide variety of densities. In particular, for a second order
kernel K , p = s = 2.

In Section 2 we report a detailed simulation study and analysis of a real data set. Simulations demonstrate that for a
second order kernel, our bootstrap bandwidth can perform much better than hSJPI and hCao bandwidths in a number of
difficult problems – especially when f exhibits a number of peaks and sample size is moderate. In Theorem 1 of Section 3,
we obtain the L1 rate at which ĥ∗ succeeds inminimizing theM as sample size is increased. Its proof is given in the Appendix.
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