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a b s t r a c t

Anewempirical likelihood approach is developed to analyze data from two-stage sampling
designs, in which a primary sample of rough or proxy measures for the variables of
interest and a validation subsample of exact information are available. The validation
sample is assumed to be a simple random subsample from the primary one. The proposed
empirical likelihood approach is capable of utilizing all the information from both the
specific models and the two available samples flexibly. It maintains some nice features
of the empirical likelihood method and improves the asymptotic efficiency of the existing
inferential procedures. The asymptotic properties are derived for the new approach. Some
numerical studies are carried out to assess the finite sample performance.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

When resource constraints prohibit collecting exact measurements on all variables of interest for the participants in a
study, a two-stage or double sampling design may be used. A primary sample of cheaper (proxy) measurements are first
drawn from the target population. At the second stage, a validation subsample is drawn from the primary sample. For each
subject in the validation subsample, the exact information is collected in addition to the rough data. As a result, two sets of
data, the proxy data on all subjects, along with the validation data on the subsample, are available for statistical inference.

Some efforts have been made to provide statistical methods for data analysis under two-stage sampling designs. For
example, Tenenbein (1970) discussed estimation for binomial data. Breslow and Cain (1988) focused on logistic regression.
Carroll and Wand (1991) and Pepe and Fleming (1991) proposed a nonparametric likelihood approach which can be used
when the continuous part of the data is of low dimension. Since exact information for the whole sample is not observed
completely, this two-stage sampling design can be put into the framework of missing data and some missing data analysis
techniques can be applied. When the full parametric models for both primary and validation samples are specified, one can
use the EM algorithm to get the MLE (Dempster et al., 1977). However, the validity of the MLE relies heavily on the model
assumptions. Robins et al. (1994) provided a general class of estimators for missing data under the missing at random
assumption. Their estimators include all possible regular asymptotic linear estimators. The semiparametric efficiency
bound is attainable by choosing the optimal estimating function in that class. Nonetheless, the optimal one involves the
knowledge about the underlying joint distribution of the two samples, and is therefore difficult to construct. More recently,
Chen and Chen (2000) proposed a simple estimation procedurewhen the validation subsample is randomly chosen from the
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primary sample. Their estimator belongs to the general class of Robins et al. (1994). Although it is not optimal, their estimator
is not difficult to implement and possesses good efficiency. Chen and Chen’s (2000) method is designed for regression
problems, so the number of unknownparameters is required to be equal to the number of estimating functions. This restricts
its extension to more complicated situations.

Inmanyproblems, peoplemayhavemore estimating functions than unknownparameters andwant tomake full use of all
the information. Qin and Lawless (1994) introduced the empirical likelihood method to utilize all the estimating functions.
Empirical likelihood was first introduced by Owen (1988, 1990) for constructing generalized likelihood ratio test statistics
and corresponding confidence regions. In Qin and Lawless’s (1994) work, they used the method to obtain point estimation
and showed that asymptotically, the empirical likelihood function is able to make the optimal linear combination of the
original estimation functions automatically. Therefore, empirical likelihood has been widely used in these so-called over-
identified problems. Some recent papers extended the empirical likelihood approach to validation sample problems; c.f.,
Wang and Rao (2002) and Stute et al. (2007), among many others. However, all these papers focus on regression problems
and require the response variables to be observable. Moreover, to the best of our knowledge, no existing literature has
discussed the over-identified situation under the two-stage sampling scheme.

In this paper,we develop a newempirical likelihood approach to data analysis under the two-stage sampling designwhen
the validation data is a random subsample of the primary data. The newmethod is not confined to the regression framework
and is able to deal with the over-identified situation flexibly. As a semiparametric method, our approach does not require
a fully parametric model nor a correct specification of the association between the primary and validation samples. All the
knowledge about the underlying distribution is contained in a series of estimating functions. The new empirical likelihood
approach can utilize the information fromall the estimating functions and the rough data robustly and effectively.Moreover,
whenmaking inferences, our approach does not require estimating any variance–covariancematrices,which is an important
feature of the empirical likelihood method. Instead, some suitable optimization techniques are necessary to implement the
new approach.

The rest of the paper is organized as follows. In Section 2, we describe the new empirical likelihood approach and state its
asymptotic properties. Some numerical results are presented in Section 3. Section 4 concludes. Technical details are given
in the Appendix.

2. Main results

2.1. Notation and model specification

Let N denote the size of the primary sample. Assume that the rough or proxy data, X̃i, i = 1, 2, . . . ,N , are i.i.d. copies
of a d-dimensional random vector X̃ . Let V be a random subset of {1, 2, . . . ,N} with size of n (n < N). For each subject in
V , the exact information X ∈ Rd is recorded. Thus, the two available data sets are the primary sample {X̃i, i = 1, 2, . . . ,N}

and the validation sample {Xi, i ∈ V }.
Let the distribution of X be denoted by F . The parameter of interest, θ , is a p-dimensional parameter associated with F .

The information about θ is contained in a set of estimating functions g(X, θ) = (g1(X, θ), g2(X, θ), . . . , gr(X, θ))T , where
r ⩾ p. Let θ0 be the true value of θ . The model we specify takes the form of E[g(X, θ0)] = 0. Correspondingly, for the
proxy data, assume that we have h(X̃, γ ) = (h1(X̃, γ ), h2(X̃, γ ), . . . , hs(X̃, γ ))T , where γ is a q-dimensional parameter
associated with the distribution of X̃ and h(·, ·) is an s-dimensional function of X̃ and γ chosen by the researchers. A key
requirement of the choice is that there exists some γ0 such that E[h(X̃, γ0)] = 0. Let X = (XT , X̃T )T , α = (θ T , γ T )T and
m(X, α) = (g(X, θ)T ,h(X̃, γ )T )T .

Let δ = 1 if an observation belongs to the validation sample and δ = 0 otherwise. Then the available data can be
written as {(X̃i, δi, δiXi), i = 1, 2, . . . ,N}, which can be viewed as N i.i.d. copies of (X̃, δ, δX). Note that when δi = 0, Xi
is unobservable, or equivalently, is missing. Thus, this two-stage sampling design can be placed within the framework of
missing data. That the validation data is a random subsample means that δi is independent of (X̃i, Xi), which corresponds to
the assumption that the missing data are missing completely at random (MCAR).

Under the MCAR assumption, one may use the validation data to make valid inference about θ0, but the proxy data
is also useful in improving the efficiency because of the association between the primary and validation samples. When
p = r = q = s, the estimating equations for θ0 and γ0 are well defined based on g(X, θ) and h(X̃, γ ). Therefore, Chen and
Chen’s (2000) estimation procedure can be applied herewithout any difficulty. However, when r > p or q ≠ s, their method
cannot be extended directly. To fully utilize all the available information, a new inferential procedure is needed.

2.2. The empirical likelihood approach

When r > p, Qin and Lawless (1994) defined an empirical likelihood function to combine all the estimating functions
g1(X, θ), g2(X, θ), . . . , gr(X, θ). Based on the validation sample only, Qin and Lawless’s (1994) empirical likelihood function
takes the form of

LQL(θ) = sup

∏
i∈V

pi |

−
i∈V

pig(Xi, θ) = 0,
−
i∈V

pi = 1, pi ≥ 0
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