
Statistics and Probability Letters 81 (2011) 973–982

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

The beta Laplace distribution
Gauss M. Cordeiro a, Artur J. Lemonte b,∗

a Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Brazil
b Departamento de Estatística, Universidade de São Paulo, Brazil

a r t i c l e i n f o

Article history:
Received 14 August 2010
Received in revised form 7 January 2011
Accepted 22 January 2011
Available online 2 February 2011

Keywords:
Double exponential distribution
Laplace distribution
Maximum likelihood estimation
Mean deviation
Order statistic

a b s t r a c t

The Laplace distribution is one of the earliest distributions in probability theory. For the first
time, based on this distribution, we propose the so-called beta Laplace distribution, which
extends the Laplace distribution. Various structural properties of the new distribution are
derived, including expansions for its moments, moment generating function, moments of
the order statistics, and so forth. We discuss maximum likelihood estimation of the model
parameters and derive the observed information matrix. The usefulness of the new model
is illustrated by means of a real data set.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the earliest distributions in probability theory was introduced by Laplace in 1774 (Laplace, 1774). A random
variable Z has the Laplace distribution with location parameter µ and scale parameter σ > 0, say Z ∼ L(µ, σ ), if its
probability density function (pdf) is given by

g(z) =
1
2σ

exp

−

|z − µ|

σ


, −∞ < z < ∞.

The mean, median and mode are all equal toµ. The variance is 2σ 2 and the skewness and kurtosis are 0 and 6, respectively.
The moment generating function (mgf) of Z is M(t) = (1 + σ 2 t2)−1 exp(µt). In addition, the cumulative distribution
function (cdf) becomes

G(z) =


1
2
exp


z − µ

σ


, z < µ,

1 −
1
2
exp


−

z − µ

σ


, z ≥ µ.

If we consider the standardized random variable X = (Z−µ)/σ , the pdf of X reduces to g(x) =
1
2 exp(−|x|),−∞ < x < ∞,

and the corresponding cdf and mgf are given by
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G(x) =


1
2
exp(x), x < 0,

1 −
1
2
exp(−x), x ≥ 0,

andM(t) = (1 + t2)−1, respectively. In this case, X ∼ L(0, 1).
The Laplace distribution, also named the double exponential distribution, and its variants are becoming popular in many

areas of science and engineering. This distribution is often used for modeling phenomena with ‘‘heavier than normal tails’’;
see for example, Andrews et al. (1972),Manly (1976), Easterling (1978), Hsu (1979), Bagchi et al. (1983), Hoaglin et al. (1983),
Dadi and Marks (1987), Damsleth and El–Shaarawi (1989), Puig and Stephens (2000), Chen (2002), and also Johnson et al.
(1995) which contains a detailed list of references. A book-length account of Laplace distributions, discussing in great detail
their various properties and applications, is available due to Kotz et al. (2001).

In this article we propose a new model, so-called the beta Laplace (BL) distribution, which contains as a sub-model the
Laplace distribution. The BL distribution is convenient for modeling asymmetric data as a competitive model to beta normal
and skew-normal distributions. We obtain some mathematical properties, discuss maximum likelihood estimation of the
parameters and derive the observed information matrix. The article is outlined as follows. In Section 2, we introduce the
BL distribution and provide plots of the density function. We demonstrate that the BL density function can be expressed
as an infinite linear combination of Laplace density functions in Section 3. We provide in Section 4 a general expansion for
the moments and mgf. Expansions for the quantile function and mean deviations are provided in Section 5. In Section 6, we
demonstrate that the density function of the BL order statistics can be written as a linear combination of Laplace densities.
We also obtain expansions for themoments of the order statistics. The Rénvy and Shannon entropies are derived in Section 7.
Maximum likelihood estimation is addressed in Section 8. Section 9 illustrates the importance of the BL distribution through
the analysis of a real data set. Finally, Section 10 offers some concluding remarks.

2. The beta Laplace distribution

The generalization of the Laplace distribution is motivated by the work of Eugene et al. (2002) who defined a class of
generalized beta distributions by

F(x) =
1

B(a, b)

∫ G(x)

0
ωa−1(1 − ω)b−1dω = IG(x)(a, b). (1)

Here, a > 0 and b > 0 are two additional parameters which control skewness through the relative tail weights,
Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio, By(a, b) =

 y
0 ω

a−1(1 − ω)b−1dω is the incomplete beta
function, B(a, b) = Γ (a)Γ (b)/Γ (a + b) is the beta function and Γ (·) is the gamma function. This class of generalized
distributions has been receiving considerable attention over the last years in particular after the work of Jones (2004). The
probability density function (pdf) corresponding to (1) is f (x) = g(x)G(x)a−1

{1 − G(x)}b−1/B(a, b), where g(x) = dG(x)/dx
is the parent density function. The density f (x)will bemost tractablewhen both functionsG(x) and g(x) have simple analytic
expressions. Except for special choices of these functions, f (x)will be difficult to deal with some generality.

Eugene et al. (2002), Nadarajah and Gupta (2004), Nadarajah and Kotz (2004, 2006), Lee et al. (2007) and Akinsete et al.
(2008) defined the beta normal, beta Fréchet, beta Gumbel, beta exponential, beta Weibull and beta Pareto distributions by
taking G(x) to be the cdf of the normal, Fréchet, Gumbel, exponential, Weibull and Pareto distributions, respectively. More
recently, Barreto-Souza et al. (2010), Pescim et al. (2010) and Cordeiro and Lemonte (2011) introduced the beta generalized
exponential, the beta generalized half-normal and the beta Birnbaum–Saunders distributions, respectively.

The cdf of the BL distribution can be written as

F(x) =


Iexp(x)/2(a, b), x < 0,
I1−exp(−x)/2(a, b), x ≥ 0. (2)

The density function corresponding to (2) is given by

f (x) =


{2aB(a, b)}−1 exp(−|x|) exp{−|x|(a − 1)}{1 − exp(−|x|)/2}b−1, x < 0,
{2bB(a, b)}−1 exp(−|x|) exp{−|x|(b − 1)}{1 − exp(−|x|)/2}a−1, x ≥ 0.

(3)

We note that the case x < 0 can be obtained from the case x ≥ 0 by replacing x for −x and interchanging a and b. Clearly,
for a = b = 1, Eq. (3) reduces to the standard Laplace density function. If X follows (3), we write X ∼ BL(a, b). Plots of the
BL(a, b) distribution are illustrated in Fig. 1 for selected parameter values, including the special case of the standard Laplace
distribution. It is evident that the BL distribution is much more flexible than the Laplace distribution.

The properties of a random variable Z having the BL distribution with location parameterµ and dispersion parameter σ ,
say Z ∼ BL(µ, σ , a, b), can be determined directly from those properties of X using the linear transformation Z = µ+ σX .

3. Expansions

First, if |z| < 1 and b > 0 is real non-integer, we have the power series expansion (1 − z)b−1
=
∑

∞

j=0


b−1
j


(−1)jz j.

Applying this expansion for x < 0, we obtain
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