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a b s t r a c t

Let Wt be a standard Brownian motion. It is well-known that the Langevin equation
dUt = −θUtdt + dWt defines a stationary process called Ornstein–Uhlenbeck process.
Furthermore, Langevin equation can be used to construct other stationary processes by
replacing Brownian motion Wt with some other process G with stationary increments.
In this article we prove that the converse also holds and all continuous stationary processes
arise from a Langevin equation with certain noise G = Gθ . Discrete analogies of our results
are given and applications are discussed.

© 2016 Published by Elsevier B.V.

1. Introduction

Let G = (Gt)t∈R be a continuous process with stationary increments and consider a Langevin equation

dUt = −θUtdt + dGt , t ∈ R (1.1)

with some condition on U0. If G = W is a standard Brownian motion, then it is well-known that the Eq. (1.1) has
a stationary solution that is called the Ornstein–Uhlenbeck process. Consequently, Langevin equation is connected to
Ornstein–Uhlenbeck processes and can be used to construct stationary processes. Furthermore, Langevin type equations
also have applications in statistical physics which highlights the importance of these equations even more.

A natural question related to Eq. (1.1) is whether it has a stationary solution with suitably chosen initial condition for
more general noise term G, and this question was studied recently in Barndorff-Nielsen and Basse-O’Connor (2011) for
general stationary increment noise G. The main result in Barndorff-Nielsen and Basse-O’Connor (2011) was that under mild
integrability assumptions on the driving force G, Eq. (1.1) has a stationary solution.

Another useful tool to construct stationary processes is via Lamperti theorem (Lamperti, 1962) which states that each
H-self-similar process X (for details on self-similar processes we refer to monographs Embrechts and Maejima, 2002;
Flandrin et al., 2003; Tudor, 2013 dedicated to the subject) can be written as a Lamperti-transform X = LHY , where Y
is a stationary process. Moreover, Lamperti-transform is invertible and hence stationary processes can be constructed from
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H-self-similar process via inverse transform Y = L
−1
H X . Self-similar processes also have numerous applications. For exam-

ple, the connection between self-decomposable laws and Levy processes (for details, we refer to Bertoin, 1996; Sato, 1999)
with self-similar processes is studied in Jurek and Vervaat (1983), Wolfe (1982), Sato (1991) and Jeanblanc et al. (2002)
to name a few. Especially, Jeanblanc et al. (2002) used H-self-similar processes to connect two different representations
derived in Jurek and Vervaat (1983), Wolfe (1982) and in Sato (1991) for self-decomposable laws where the first represen-
tation is in terms of Levy processes (so called background driving Levy process) and the second representation is in terms
of H-self-similar processes.

A process with special interest is the case of fractional Brownian motion with H ∈ (0, 1) and Ornstein–Uhlenbeck
processes associated with it has been studied in Bercu et al. (2011), Cheridito et al. (2003) and Kaarakka and Salminen
(2011). Recall that BH is the only Gaussian process which is H-self-similar and has stationary increments. Consequently,
both approaches can be used to construct stationary processes. However, it is also known that the resulting processes are
the same (in law) only in the case H =

1
2 , i.e. in the case of standard Brownian motion. On the other hand, it was proved by

Kaarakka and Salminen (2011) that even the Lamperti transform of fractional Brownian motion can be defined as a solution
to Langevin type equation with some driving noise G. Furthermore, statistical problems for fractional Ornstein–Uhlenbeck
processes have been studied at least in Azmoodeh and Morlanes (2015), Azmoodeh and Viitasaari (in press), Brouste and
Iacus (2012), Hu and Nualart (2010), Kleptsyna and Le Breton (2002) and Xiao et al. (2011). For research related to more
general self-similar Gaussian processes, see also Nuzman and Poor (2011) and Yazigi (2015).

In this article we make use of the Lamperti theorem to characterise (continuous) stationary processes as solutions to
the Langevin equation (1.1) with some noise process G belonging to a certain class GH . More precisely, as our main result
we show that a process is stationary if and only if it is a solution to the Langevin equation with noise G ∈ GH . As a simple
consequence it follows that Langevin equation (1.1) has a stationary solution if and only if the noise process G belongs to GH ;
a result which generalises themain findings of Barndorff-Nielsen and Basse-O’Connor (2011). Moreover, we characterise the
class GH in terms of H-self-similar processes, and hence the results of this paper connect the two mentioned approaches to
construct stationary processes in a natural way.We also present discrete analogies to ourmain theorems and consider some
applications. For example, as a consequence of our main result we obtain that all discrete time stationary models reduces
to a AR(1)-modelwith a non-white noise.

The rest of the paper is organised as follows. In Section 2 we introduce our notation and preliminary results, and in
Section 3 we present and prove our main results. Section 4 is devoted to applications and examples.

2. Notation and preliminaries

Throughout the paper we assume that all processes (Xt)t∈R have continuous paths almost surely (for extensions,
see Remark 2.1). Consequently, we can define integrals of form

 t
s eHudXu over a compact interval [s, t] and some constant

H ∈ R via integration by parts formula t

s
eHudXu = eHtXt − eHsXs − H

 t

s
XueHudu,

where the last integral is understood as a Riemann integral. For numbers t < s we use standard definition
 t
s = −

 s
t .

We also consider indefinite integrals of type
 t
−∞

eHudXu which are defined similarly as t

−∞

eHudXu = eHtXt − H
 t

−∞

eHuXudu

provided that the integral on the right exists almost surely.

Remark 2.1. We remark that for our purposes, the key ingredient is the fact that the above integrals under consideration
can be defined as Riemann integrals and integration by parts is valid. Hence the assumption of almost sure continuity is not
needed a priori but it is made to ensure that the integrals considered can be understood pathwise without any additional
technicalities. In comparison, in Barndorff-Nielsen and Basse-O’Connor (2011) the authors assumed integrability of the
driving force of the Langevin equation which ensured that the integrals can be understood as Lp-limits of Riemann–Stieltjes
sums. For generalisations, see also Section 4.1.

We denote Xt
law
= Yt if finite dimensional distributions of X and Y are equal. Throughout the paper, we consider strictly

stationary processes, i.e. processes U = (Ut)t∈R for which Ut+h
law
= Ut for every h ∈ R. However, we remark that all the

results of this paper are true for covariance stationary processes as well.
Next we recall definition of Lamperti transform and its inverse together with the famous Lamperti theorem. First we

recall the definition of self-similar processes.

Definition 2.1. Let H > 0. A process X = (Xt)t≥0 with X0 = 0 is H-self-similar if

Xat
law
= aHXt

for every a > 0. The class of all H-self-similar processes on [0, ∞) are denoted by XH .
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