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1. Introduction

In many medical and scientific studies, a major goal is understanding the relationship between a treatment and
a response. Recently, there has been great interest in attempting to determine the causal effects associated with an
intervention in an observational study setting. While the “gold-standard” approach would be to assess the intervention’s
effects using some type of randomized study design, in many situations this cannot be done because of logistic, economic,
and/or ethical constraints.

In the literature on causal effect estimation, one of the major quantities that has played a central role is the propensity
score (Rosenbaum and Rubin, 1983). This is the probability of receiving the treatment given a set of measured covariates.
The causal effect estimation procedure normally proceeds in two steps. In the first step, the propensity score is modelled.
Based on the estimated propensity score, the second step involves causal effect estimation. This can be done in a variety of
ways, including matching, regression modelling, inverse probability weighted techniques and/or some combination thereof.
A necessary condition for causal inference is termed the treatment ignorability assumption by Rosenbaum and Rubin (1983).
It is described formally in Section 2.2, but the key observation is that the treatment ignorability assumption can be viewed as
a conditional independence assumption involving the potential outcomes, the treatment and the covariates. Stone (1993)
provides a nice discussion of what conditional independence assumptions are needed in order to make certain types of
causal inferences.

There is another class of methods termed dimension reduction methods (Li, 1991) that involves conditional
independence assumptions. Dimension reduction methodology has been a topic of intense research interest in the last
twenty years, but for the purposes of exposition, we focus on sliced inverse regression (SIR) and partial least squares (PLS).
The PLS method has been used primarily in the chemometrics literature; a comparison between partial least squares and
dimension reduction methods was given by Naik and Tsai (2000). Much of this literature has focused on assessing the ability
of the estimation procedures to capture the structure of the central subspace. These terms are more carefully defined in
Section 2.2. However, in the causal inference framework, the central subspace is not our target estimand of interest. Rather,
we use the output of the fitted model using PLS or SIR into a second regression model in order to estimate the average
causal effect, defined in Section 2.1. We argue, mainly using simulation studies, that for the purposes of estimating causal
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effects, both PLS and SIR give fitted probabilities, or functionals thereof, that yield causal effect estimators with good finite-
sample performance. Thus, misestimation of dimension reduction procedures, or equivalently, violation of distributional
assumptions, appears to have very little effect on the average causal effect estimator.

A second goal of the paper is to use the ideas of conditional independence and in particular covariate sufficiency
(Dawid, 1979) as a way to link dimension reduction methods to causal inference. This approach was also used by Nelson
and Noorbaloochi (2009) in order to define what they term “dimension reduction summaries”. In particular, some of the
assumptions needed for validity of dimension reduction methods tie in nicely with a matching property used in causal
inference termed equal percent bias reduction (EPBR) (Rubin and Thomas, 1992; Rubin and Stuart, 2006). The structure of
this paper is as follows. In Section 2, we describe the observed data structures and review both the conditional independence
assumptions needed for the causal inference, dimension reduction and partial least squares methods. In Section 3, we
describe our proposed algorithm in conjunction with attendant theoretical properties of the proposed method. Application
to areal dataset along with results from a limited simulation study are given in Section 4. We conclude with some discussion
in Section 5. Proofs of the results are presented in a web Appendix.

2. Background and preliminaries

2.1. Data structures, causal estimands and conditional independence assumptions

Let the data be represented as (Y;, T;, Z;), i = 1, ..., n, arandom sample from the triple (Y, T, Z), where Y denotes the
response of interest, T denotes the treatment group, and Z is a p-dimensional vector of covariates. We assume that T takes
the values {0, 1}. We adopt the causal inference framework that has been discussed by several other authors (Rubin, 1974;
Holland, 1986). If we were given the counterfactuals (Y (0), Y (1)) for all n subjects, then we would be able to define causal
effects, which are within-individual contrasts between the counterfactuals. In particular, given (Y;(0), Y;(1)), i=1,...,n,
we define the average causal effect:

ACE =n"! Z{Yi(l) — Yi(0)}. (1)
i=1

The standard assumption necessary for causal inference will be made:
T L {Y(0), Y(D}IZ, (2)

i.e. treatment assignment is conditionally independent of the set of potential outcomes given covariates. This is the strong
unconfounding or treatment ignorability assumption made by Rosenbaum and Rubin (1983). They then proposed the use
of the propensity score for estimation of causal effects in observational studies. The propensity score is defined as

e(Z) =P(T = 1|2) (3)

and represents the probability of receiving treatment as a function of covariates. Use of the propensity score leads to balance
in covariates between the groups withT = 0 and T = 1. Statistically, this corresponds to the conditional independence of T
and Z conditional on e(Z) and is summarized in Theorem 1 of Rosenbaum and Rubin (1983). Given the treatment ignorability
assumption in (2), it also follows by Theorem 3 of Rosenbaum and Rubin (1983) that treatment is strongly ignorable given
the propensity score, i.e.

Z 1 {Y(0),Y(1)}le(Z).

Typically, the model fit for (3) involves a high-dimensional covariate vector. This has usually been done based on logistic
regression. Logistic regression specifies the effects of covariates on the probability of treatment in a completely parametric
manner. Given that the output from the model is the fitted values, the case can be made for adopting more flexible models
of treatment. One such generalization is given in the next section.

2.2. Dimension reduction methods

Suppose we formulate a semiparametric model for the propensity score as

eZ) =g(B'Z, ), (4)

where B is a p-dimensional vector of unknown regression coefficients, u is an error term, and g is an unspecified link
function. Because of the nonparametric nature of the link function, model (4) is semiparametric. Thus, (4) represents a
flexible extension of the logistic regression model for propensity scores. Note that linear, logistic and log-linear regression
models are special cases of (4). It is also an example of a single-index model in that the information about the covariate
effects on the response is completely captured through the linear predictor, or equivalently, single-index 8'Z.

The starting point of dimension reduction methods is the conditional independence of T and Z given e(Z). An implication
of model (4) being true is that there exists a p x 1 vector B, where

T L ZBZ (5)
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