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a b s t r a c t

Conditions for the finiteness of long run costs and rewards associated with infinite
recurrent Markov chains that may be discrete or continuous in time are considered.
Without resorting to results from the theory of Markov processes on general state spaces
we provide instructive proofs in the course of which we derive auxiliary results that are
of interest in themselves. Potential applications of the finiteness conditions are outlined in
order to elucidate their high practical relevance.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that for irreducible recurrent Markov chains, discrete or continuous in time, on a countable,
possibly infinite state space S there exists an invariant measure ψ = (ψi)i∈S , which is unique up to a multiplicative
constant. Furthermore, denoting irreducible discrete-time and continuous-time Markov chains on S by (Yn)n∈N and (Xt)t≥0,
respectively, for functions f (1), f (2) : S → R with ψ

f (1) < ∞, ψ
f (2) < ∞,

lim
N→∞

N
n=0

f (1)(Yn)

N
n=0

f (2)(Yn)

=
ψ f (1)

ψ f (2)
, resp., lim

t→∞

 t
0 f (1)(Xs) ds t
0 f (2)(Xs) ds

=
ψ f (1)

ψ f (2)
, (1)

with probability 1, see Chung (1960, pp. 85–86, 203–209), where f (1), f (2), written as functions in the usual way or
represented as column vectors, may be interpreted as cost or reward functions. This motivates to study conditions for the
finiteness of ψ f =


i∈S ψif (i) with f : S → R in the case of irreducible recurrent Markov chains. Both in discrete time

and in continuous time we consider ‘Foster–Lyapunov-type criteria’ involving generalized ‘drift conditions’. More precisely,
for discrete-time Markov chains (Yn)n∈N with transition probability matrix P = (pij)i,j∈S and a function g : S → R the drift
function dg : S → R is defined by

dg(i) = E[g(Yn)− g(Yn−1)|Yn−1 = i] =


j∈S

pijg(j)− g(i), (2)
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that is, when writing g and dg in the form of column vectors, dg = Pg − g . For continuous-time Markov chains (Xt)t≥0 with
generator matrix Q = (qij)i,j∈S and a function g : S → R the drift function dg : S → R is defined by

dg(i) =
d
dt

E[g(Xt)|Xt = i] =


j∈S

qijg(j) (3)

that is, when writing g and dg in the form of column vectors, dg = Qg . In both cases, dg(i) is the (generalized) drift in state i
with respect to g .

Theorem 1. Let (Yn)n∈N be an irreducible discrete-time Markov chain with transition probability matrix P = (pij)i,j∈S , C ⊂ S
finite, and let f , g : S → R≥0 meet the conditions
(C1) ∀i ∈ S \ C : dg(i) ≤ −f (i),
(C2) ∀i ∈ C : dg(i) < ∞,
(C3) ∀r < ∞ : |{i ∈ S : g(i) ≤ r}| < ∞.

Then (Yn)n∈N is recurrent and for any invariant measure ψ , ψ f < ∞.

Theorem 2. Let (Xt)t≥0 be an irreducible continuous-time Markov chain with generator matrix Q = (qij)i,j∈S , C ⊂ S finite, and
let f , g : S → R≥0 meet the conditions (C1)–(C3). Then Q is regular (it uniquely defines (Xt)t≥0, the Feller process of Q ), and
(Xt)t≥0 is recurrent and for any invariant measure ψ , ψ f < ∞.

Note that the special case of Theorem 1 for f (i) = 1 is a famous criterion for positive recurrence of discrete-timeMarkov
chains. With |C| = 1 it is due to Foster (1953), in the slightly more general case of arbitrary finite C it was proven by Pakes
(1969). A similar result is given by Theorem 14.0.1 inMeyn and Tweedie (1993), where (C1), (C2) and f ≥ 1 are proved to be
sufficient for f -ergodicity, that is positive recurrence and π f < ∞ for the invariant distribution π . Comparing Theorem 1
with this result,wehave to emphasize that Theorem1only requires nonnegativity of f , that is f ≥ 0,whereas Theorem14.0.1
in Meyn and Tweedie (1993) requires f ≥ 1. Hence, Theorem 1 poses a weaker condition on f . This has two important
consequences:

• Theorem 1 does not guarantee positive recurrence. For instance, let S = N, pi,i+1 = pi,i−1 =
1
2 for i ≥ 1, f = 0 and

g(i) = i. Then dg(i) = 0 for i ≥ 1, and hence, conditions (C1)–(C3) are met, but obviously, we have null recurrence.
• (C3) cannot be omitted: Let P be an arbitrary irreducible transition probability matrix, and choose g = 1. Then dg(i)

converges for all i ∈ S with dg(i) = 0. Hence, (C1) and (C2) are met with f = 0. Since P can be transient, Theorem 1
would not be true without condition (C3).

Likewise, the special case of Theorem 2 for f (i) = 1 is a famous criterion for regularity and positive recurrence of
continuous-timeMarkov chains, which is due to Theorem 2.3 in Tweedie (1975). Appropriate functions g as in the theorems
are often called Lyapunov functions, the conditions in the theorems are also referred to as Foster–Lyapunov-type criteria
and those on dg as (generalized) drift conditions.

The recurrence of (Yn)n∈N follows from Theorem 3.3 in Tweedie (1975), so that an invariant measure ψ exists. Hence,
it remains to prove the finiteness of ψ f . In principle, one may deduce it from Tweedie (1983, 1988), where discrete-time
Markov processes on general state spaces are considered, but we shall provide an alternative instructive proof specifically
for countable state spaces in the course of which we derive auxiliary results that are of interest in themselves. Then we
prove Theorem 2 via the embedded jump chain.

2. Proof of Theorem 1

First note thatwhen proving positive recurrence, one can exploit the fact that limn→∞ p(n)ij > 0 for some j ∈ S is sufficient
for positive recurrence, where p(n)ij denotes the n-step transition probability from state i to state j, but for proving Theorem 1
with general nonnegative f we cannot use this approach, because even in the case of positive recurrence, where limn→∞ p(n)ij
exists and is positive for all i, j ∈ S, it is not guaranteed that ψ f is finite. Alternatively, from Tweedie (1983, Theorem 1),
where conditions for the existence of moments with respect to the unique stationary distribution of a discrete-timeMarkov
chain with general state space are given, one may deduce the special case of countable state spaces and then extend it to
our case of arbitrary invariant measures.

Instead, we will exploit an interpretation of g as follows. For positive recurrence, f (i) = 1, an appropriate function g is
given by g(j) = hj,C = E[τC |Y0 = j] where τC is the first passage time to the set C and thus hj,C is the mean first passage
time from j to C, see Theorem 3.2 in Tweedie (1975). Furthermore, any function g satisfying the conditions of Theorem 1
for f (i) = 1 yields upper bounds for the mean first passage times hj,C ≤ g(j). Thus, hj,C is finite for every j ∈ S and (Yn)n∈N
is positive recurrent. Such an approach for proving Foster–Lyapunov-criteria can for example be found in Breuer and Baum
(2005, pp. 30–31). We will appropriately generalize this proof technique. The main idea consists in replacing τC by

τ
(f )
C =

τC−1
k=0

f (Yk), (4)
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