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a b s t r a c t

Poisson change-point models have been widely used for modelling inhomogeneous time-
series of count data. There are a number ofmethods available for estimating the parameters
in these models using iterative techniques such as MCMC. Many of these techniques share
the common problem that there does not seem to be a definitive way of knowing the
number of iterations required to obtain sufficient convergence. In this paper, we show that
the Gibbs sampler of the Poisson change-pointmodel is geometrically ergodic. Establishing
geometric ergodicity is crucial from a practical point of view as it implies the existence of a
Markov chain central limit theorem, which can be used to obtain standard error estimates.
We prove that the transition kernel is a trace-class operator, which implies geometric
ergodicity of the sampler. We then provide a useful application of the sampler to a model
for the quarterly driver fatality counts for the state of Victoria, Australia.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Under the Poisson change-point model we observe a nonhomogeneous sequence of T independent Poisson random vari-
ables X1, . . . , XT . More specifically, we consider the case when the rate, λ, changes from λ1 to λ2 at an unknown point τ1,
then from λ2 to λ3 at a later unknown point τ2, and so on, until the rate changes to λK , where it remains, for the observation
periods τK +1 to T . Thismodel has beenwidely studied (see Carlin et al., 1992, and Raftery and Akman, 1986, among others).
Here, we use a Poisson change-point model for detecting the shifts and levels of quarterly driver fatality counts for the state
of Victoria, Australia. Within this application, the timing and size of the shifts in the dynamics of the data provide insight
into the effectiveness of particular government policies in reducing the number of road fatalities. In this paper, we utilize the
results from Khare and Hobert (2011) to show a theoretical result on the convergence of the Gibbs sampler for estimating
the model parameters that is of great importance to practitioners. In cases where these models are utilized for providing
objective evidence to influence future policy-making, we must have confidence that the iterative algorithm for estimating
the model parameters has converged.

In Section 2, we outline the model specification and introduce some notations. We then discuss the estimation of
the model parameters in Section 3. The main result is presented in Section 4 where we show that the Gibbs sampler is
geometrically ergodic. These theoretical results are used in practice in Section 5, where we apply the model to the quarterly
driver fatality counts for the state of Victoria, Australia. We then discuss some conclusions and potential avenues for future
research.
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2. Model specification

Consider the Poisson change-point model, where

Yi|λ, τ
ind.
∼


Po(λ1) for i = 1, . . . , τ1;
Po(λ2) for i = τ1 + 1, . . . , τ2;
...
Po(λK ) for i = τK−1 + 1, . . . , τK ;

Po(λK+1) for i = τK + 1, . . . , T .

λi|β, τ
ind.
∼ G(ai, βi), i = 1, . . . , K + 1

βi|τ
ind.
∼ IG(ci, di), i = 1, . . . , K + 1

τ1, . . . , τK are sampled without replacement from the set {1, 2, . . . , T − 1}.

(1)

Here X ∼ G(a, b) implies that we have the density fX (x) =
xa−1

baΓ (a) e
−

x
b , x > 0 and X ∼ IG(c, d) implies that we have the

density fX (x) =
1

dcxc+1Γ (c)
e−

1
dx , x > 0. Without loss of generality, we assume τ1 < τ2 < · · · < τK . Note also that 1 ≤ τ1 ≤

T −K −1 and τi−1+1 ≤ τi ≤ T −K −1+ i for i = 2, . . . , K , which implies theremust be K change-points in the observation
period. If we fix K = 1, then we have the Poisson change-point model that was studied in Carlin et al. (1992).

3. Estimation of the model parameters

Our main interest is in estimating the vector λ and the change-points τ = (τ1, . . . , τK ) by obtaining a sample from their
posterior distributions. From (1) we obtain the joint density

f (y, λ, β, τ) =
1

T−1
K

 τ1
h=1

λ
yh
1 e−λ1

yh!

K
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
τi
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λ
yj
i e
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
T
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yk
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al
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×
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1

dcmm β
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1

dmβm . (2)

Then, the complete posterior density is

f (λ, β, τ|y) ∝ λ
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.

The desired sample will be obtained by running a two-stage Gibbs sampler that iterates between
f (λ|β, τ, y) and f (β, τ|λ, y),

where the sequence of β’s will be simply ignored.
From (2), it is clear that conditional on β, τ, y, the parameters λ1, . . . , λK+1 are independent with

λ1|β, τ, y ∼ G


τ1
i=1

yi + a1,
β1

τ1β1 + 1


;

λk|β, τ, y ∼ G


τk

i=τk−1+1

yi + ak,
βk

(τk − τk−1)βk + 1


for k = 2, . . . , K ;

λK+1|β, τ , y ∼ G


T

i=τK+1

yi + aK+1,
βK+1

(T − τK )βK+1 + 1


.

(3)

Again, from (2) it is clear that conditional on λ, y, the parameters β1, . . . , βK+1 and τ are independent with

βk|λ, y ∼ IG

ak + ck,

dk
dkλk + 1


for k = 1, . . . , K + 1;

f (τ|λ, y) =
f (y|τ, λ)

T−K−1
τ ′
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K
i=2
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. (4)
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