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a b s t r a c t

Gibbs samplers derived under different parametrizations of the target density can have
radically different rates of convergence. In this article, we specify conditions under which
reparametrization leaves the convergence rate of a Gibbs chain unchanged. An example
illustrates how these results can be exploited in convergence rate analyses.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that Gibbs samplers derived under different parametrizations of a Bayesian hierarchical model can have
dramatically different rates of convergence (Gelfand et al., 1995; Roberts and Sahu, 1997; Papaspiliopoulos et al., 2007; Yu
and Meng, 2011). In this article, we consider the reverse situation in which reparametrization has no effect. To motivate
our study, we begin with a fresh look at a well-known toy example involving a simple random effects model with known
variance components.

Consider the one-way random effects model given by

Yij = θi + ϵij, (1)

i = 1, . . . , c , j = 1, . . . ,mi, where the θis are independent and identically distributed (iid) N(µ, σ 2), and the ϵijs are in-
dependent of the θis and iid N(0, σ 2

e ). (For now, we restrict attention to the balanced case where mi ≡ m.) Suppose that
the variance components, σ 2 and σ 2

e , are known and that the prior on µ is flat. Let θ = (θ1, . . . , θc) and let y denote the
observed data. A simple calculation shows that the posterior density of µ given y is normal, but consider nevertheless the
two-component Gibbs chain {(µn, θn)}

∞

n=0 that alternately samples from the conditional distributions θ |µ, y and µ|θ, y,
which are c-variate normal and univariate normal, respectively. The marginal sequence {µn}

∞

n=0 is itself a Markov chain
whose invariant density is the posterior density (of µ given y), and it is easy to show that the exact rate of convergence of
this chain is σ 2

e /(σ
2
e + mσ 2) (see, e.g., Liu et al., 1994). The ‘‘rate of convergence’’ will be formally defined in Section 2, but

for now it suffices to note that the rate is between 0 and 1, and smaller is better.
Now consider a reparametrized version of model (1) given by Yij = µ+ui +ϵij, where the uis are iid N(0, σ 2), and the ϵijs

are independent of the uis and still iid N(0, σ 2
e ). Let u = (u1, . . . , uc). This is called the non-centered parametrization (NCP),
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whereasmodel (1) is called the centered parametrization (CP). If we put the same flat prior onµ, then the posterior density of
µ given y remains the same as in the CP model. However, the two-component Gibbs sampler derived from the NCP model,
which alternates between draws from u|µ, y and µ|u, y, is not the same as the one based on the CP. Furthermore, the two
Gibbs samplers have completely different convergence behaviors. Indeed, the convergence rate of the NCP Gibbs sampler is
1−σ 2

e /(σ
2
e +mσ 2). So when one of the two Gibbs samplers is very slow to converge, the other converges extremely rapidly.

This simple example illustrates that reparametrization can significantly affect the convergence rate of the Gibbs sampler.
In a practical version of the one-way model, the variance components are unknown. In this case, the standard default

prior density for (µ, σ 2, σ 2
e ) is 1/(σ 2

e

√
σ 2). We assume that the posterior is proper — see Román (2012) for conditions.

The posterior density of (µ, σ 2, σ 2
e ) given y, which is the same under CP and NCP, is intractable, so this is no longer a toy

example. As in the known variance case, there are two different versions of the standard two-component Gibbs sampler for
this problem: the CPGibbs sampler, which alternates between θ, µ|σ 2, σ 2

e , y and σ
2, σ 2

e |µ, θ, y, and the NCPGibbs sampler,
which alternates between u, µ|σ 2, σ 2

e , y and σ 2, σ 2
e |u, µ, y. The results of Section 3 imply that, in contrast with the known

variance case, these two Gibbs samplers converge at exactly the same rate. Consequently, convergence rate results for either
of these Gibbs samplers apply directly to the other. In Section 3 we compare the results of Román (2012), who analyzed the
NCP Gibbs sampler, with those of Tan and Hobert (2009), who studied the CP version.

The CP and NCP Gibbs Markov chains described above share the same rate of convergence because the transformation
that takes the CP model to the NCP model involves variables (θ and µ) that reside in the same component (or block) of
the two-component Gibbs sampler. (Note that this is not the case in the toy example where the variance components are
known.) Themain result in this paper is a formalization of this idea.We nowprovide an overview of our results in the special
case where the target distribution has a density with respect to Lebesgue measure.

Suppose f : Rd1 × Rd2 × · · · × Rdk → [0,∞) is a probability density function, and let Φ1 =

(X (1)n , X (2)n , . . . , X (k)n )

∞

n=0
denote the Markov chain simulated by the k-component Gibbs sampler based on f (x1, x2, . . . , xk) that updates the compo-
nents in the natural order. It is well-known and easy to see that themarginal sequenceΦ−1 :=


(X (2)n , . . . , X (k)n )

∞

n=0 is also a
Markov chain. Now, for i ∈ {2, 3, . . . , k}, letΦi denote the k-component Gibbs samplerwhose update order is (i, i+1, . . . , k,
1, 2, . . . , i − 1), and let Φ−i denote the corresponding marginal Markov chain (that leaves out X (i)). We show that all 2k of
these chains converge at exactly the same rate. Not only is this fact the key to the proof of our main result concerning
reparametrization, it is also useful from a practical standpoint. Indeed, if one wishes to know the rate of convergence of
Φ1, then it suffices to study the lower-dimensional chain Φ−i (for any i = 1, 2, . . . , k), which may be easier to analyze
thanΦ1. This idea has been used to establish qualitative convergence results (such as geometric and uniform ergodicity) for
two-component Gibbs samplers (see, e.g., Diebolt and Robert (1994) and Román and Hobert (2012)).

Now let (X1, X2, . . . , Xk) denote a random vector with density f , and consider the k-component Gibbs sampler Φ̃1 based
on the distribution of (X̃1, X̃2, . . . , X̃k) = (t1(X1), t2(X2), . . . , tk(Xk)). Suppose f (x1, x2, . . . , xk) can be written as a function
of (t1(x1), t2(x2), . . . , tk(xk)), an assumption that obviously holds if each ti : Rdi → Rdi is invertible. Then, by exploiting
the fact that the 2k chains described above share the same rate, we show that Φ1 and Φ̃1 converge at the same rate. An
important implication of this result is that, when analyzing the convergence rate of a Gibbs sampler, one is free to choose a
convenient parametrization, as long as the corresponding transformation respects the ‘‘within-component’’ restriction.

The remainder of this article is organized as follows. Section 2 contains some background on general state space Markov
chain theory as well as preliminary results. Our main result showing that a within-component reparametrization does not
affect the convergence rate of the Gibbs Markov chain can be found in Section 3. This section also contains the application
of our main result to the Gibbs samplers for the one-way model with improper priors.

2. Markov chain background and preliminary results

As inMeyn and Tweedie (1993, Chapter 3), let P(x, dy) be a genericMarkov transition function (MTF ) on a setX equipped
with a countably generated σ -algebra. Let Pn(x, dy) denote the n-step MTF. We assume throughout that the chain deter-
mined by P is ψ-irreducible, aperiodic and positive recurrent with invariant probability measure π . We do not assume
reversibility.

For a measure ν on X, let νPn(dy) =

X Pn(x, dy)ν(dx). Following Roberts and Tweedie (2001) and Rosenthal (2003),

define the L1-rate of convergence of the Markov chain as

ρ = exp


sup
ν∈p(π)

lim
n→∞

1
n
log ∥νPn

− π∥ TV


,

where ∥ · ∥ TV denotes the total variation norm for signed measures and p(π) is the set of all probability measures ν that are
absolutely continuouswith respect toπ with


X(dν/dπ)

2 dπ < ∞. For reversible chains,ρ equals the ‘‘usual’’ rate of conver-
gence, i.e., the spectral radius (and norm) of the self-adjoint Markov operator defined by P (Rosenthal, 2003, Proposition 2).

As in Roberts and Rosenthal (1997), we say that the chain (or the corresponding MTF) is π-a.e. geometrically ergodic if
there existM : X → (0,∞) and κ < 1 such that, for π-a.e. x ∈ X,

∥Pn(x, ·)− π(·)∥ TV ≤ M(x)κn for all n ∈ N.
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