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eigenvalues of the covariance matrix are bounded from below and that the canonical metric
associated with the Gaussian random field is dominated by an anisotropic metric. We
deduce an upper bound for the hitting probabilities and conclude that sets with small
Hausdorff dimension are polar. Moreover, the results allow for a translation of the Gaussian

MSC:

60G60 random field by a random field, that is independent of the Gaussian random field and whose
60G15 sample functions are of bounded Hélder norm.

60G17 © 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Anisotropic Gaussian random fields arise naturally in stochastic partial differential equations, image processing,
mathematical finance and other areas. Let X = {X(t)|t € I C RN} be a centered Gaussian random field with values in
RY, where I is bounded. We will call X an (N, d)-Gaussian random field. The distance in the canonical metric associated with

the Gaussian random field is \/IE [||X(s) — X(t) ||2], where || - || denotes the Euclidean metric. Polar sets for Gaussian random
fields are investigated in Weber (1983) under the assumptions that the components are independent copies of the same
random field, that the variance is constant and that \/]E [||X(s) —X(t) ||2] < c||s — t||# holds with constants ¢, 8 > 0. The
recent works Xiao (2009) and Biermé et al. (2009) consider the anisotropic metric

N
pls,t) =Y Isj— | (1)

=

with H € 10, 1]V and assume \/IE [||X(s) — X(t) ||2] < cp(s, t). In addition they require for the variance only to be bounded

from below. In this paper the assumptions on the variance and on the independent copies in the components are substituted
by the milder assumption that the eigenvalues of the covariance matrix are bounded from below. The random fields in
the components neither need to be identically distributed nor independent. Hence, we require weaker assumptions on
the dependency structure of the components of the Gaussian random field than Weber (1983), Xiao (2009) and Biermé
et al. (2009). It follows from an upper bound on the hitting probabilities of X that sets with Hausdorff dimension smaller
thand — ZJN:] 1/H; are polar. Our results allow for a translation of the Gaussian random field X by a random field, that is
independent of X and whose sample functions are Lipschitz continuous with respect to the metric p.

As an application we show that an estimator in Belomestny and Reif% (2006), which calibrates an exponential Lévy model
by option data, is almost surely well-defined.
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2. Main results

Let X be an (N, d)-Gaussian random field. Recall that we suppose the index set I to be bounded. We will assume the
following two conditions.

Condition 1. There is a constant ¢ > 0 such that for all s, t € I we have \/]E [||X(s) — X(t)||2] <cp(s,t).

Condition 2. Thereisaconstant A > Osuchthatforallt € I andforalle € R? with ||le|| = 1we have IE[(ZJ‘.i=1 erj(t))z] > A
Condition 1 bounds the canonical metric in terms of the anisotropic metric p. Condition 2 bounds the eigenvalues of the
covariance matrix from below. It excludes, for example, cases where X takes values only in some vector subspace.
We will use a uniform modulus of continuity, see (69) in Xiao (2009, p. 167). We restate this result in the next inequality.
A weaker formulation suffices for our purpose and is proved in the Appendix. Let X be an (N, d)-Gaussian random field, that
satisfies Condition 1. Then there is a version X’ of X and a constant ¢ > 0 such that almost surely the following inequality
holds:

X'(s) = X'(t
limsup  sup M <c. (2)

€l0  stelpi<e €+/log(e™1)

We will always assume that X is a version, which satisfies (2). We define by Lip, (L) :== {f : [ — RY IF ) —F@O| <
Lp(s, t) Vs, t € I} the L-Lipschitz functions with respect to the metric p. In each direction j the functions in Lip , (L) are Hélder

continuous with exponent H;. We denote by B, (t, 1) := {s € RN|p(s, t) < r} the closed ball of radius r around t.

Lemma 1. Let X be an (N, d)-Gaussian random field, that satisfies Conditions 1 and 2. Then for each L > 0 there is a constant
C > Osuch that forallt € 1, for all r > 0 and for all functions f € Lip,(L) we have

SEB, (t,r)NI

P( inf X (s) = f(s)|| < r) <af (3)

Proof. For all integers n > 1 we define €, := r exp(—2"!) and denote by N,, := N,(B,(t,r) NI, €,) the covering number,
that is the minimum number of p-balls with radii €, and centers in B, (t, r) NI that are needed to cover B, (t, r) NI. We have

the inclusion B, (t, 1) C 1_[]'.\’:1[tj —rVHi t; + r/H]. On the other hand each set ]_[}V:][sj, sj + (€n/N)"/H] can be covered by
a single ball with radius €,. Hence there is a constant ¢c; > 0 independent of n such that N, < f’zl((ZrN/en)“/”i) +1) <
¢ exp(Q2™ 1) where Q = ZJN:1 1/H;.

We denote by {ti(") € B,(t,r)NI|1 <i < N,} asetof points such that the balls with the centers {t,.(")} and radii €, cover
B,(t,r) N 1. We define

n+1

= P2 2,

where 8 > ¢ is some constant to be determined later. For all integers n, k > 1and 1 < i < Ny, we define the following
events

AP = { X)) = F & <+ n} : 4)
1=k

=

k

Nn
AP =AU A", (5)
i=1

n
A® =
U

where the last equality only holds for n > 2. We will show that the probability in (3) can be dominated by the limit of the
probabilities of the sets A™

C

i=1

P( inf _X(5) = f©)]l < r) < lim P(A™). (6)

SEBy (t,r)N
Foralls € B,(t,r) NIandalln > 1 there exists i, such that p(s, ti(n”)) < €. By (2) we obtain almost surely

. IX() = XM @
limsupsup —mMmMM— < — < 1,
n—oo sel T'n :3
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