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1. Motivation and definition

If F is any distribution function on R, the real line, and ¢: R — R a suitable score function such that f ¢dF = 0, an
M-estimate of scale S, may formally be defined by

n X; B
;qb(Sn) =0. (1.1)

The estimand refers to the scale model (F,)p<s <00 induced by F = F;, where F, (x) = F(x/o).
Taylor expanding ¢(x/s) = ¢(x/o) — (s — 0)¢'(x/o) x/5? + - - -, we formally obtain

2 Y /o)
IS, —o)=0 ! 4o (12)

n

n=1y" ¢'(xi/o) xi/o
1

such that under observations x4, . . ., X, i.i.d.~ F, and assuming sufficient regularity, in particular consistency, »/n (S, — o)
will as n — oo be asymptotically normal with mean zero and variance
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[ ¢*(x) F(dx)
(f x¢'(x) F(dx))?

If ¢ is differentiable with continuous derivative of compact support, both ¢(x) and x ¢’(x) are bounded, so the integrals
in (1.3) are well defined for any distribution F on the Borel o-algebra B of R. As in the theory of generalized functions
(Rudin, 1991, Ch. 6), regularity conditions are shifted to the test functions whenever possible.

The usual information bound for asymptotic variance would say that V(¢, F,) > fsfl(Fa) and, hopefully, the lower
bound will also be achieved.

This leads us to the following definition of .# (F). The extension to .%(F, ) for the scale transforms F,, of F matches (1.3).

V(¢7F(7) :O.Z V](¢7F)s V1(¢3F) = (13)

Definition 1.1. Fisher information of scale, for any distribution F on the real line, is defined by
2
x¢' (%) F(dx)
S51(F) == sup —(f 5 )
peca [P () F(dx)

where %1 denotes the set of all differentiable functions ¢: R — R whose derivative is continuous and of compact support,
and 0/0 := 0 by convention. For the scale transforms F, of F we define

(1.4)

I(Fy) =072 %4(F), 0<o < 0. (1.5)

Remark 1.2. Since the map ¢ — ¢,, where ¢, (x) := ¢(ox) and ¢, (x) = o ¢’ (ox), defines a one-to-one correspondence
on %1, we obtain the scale invariance of .%,

Is1(Fy) = 751(F), 0 <o < o0. (1.6)

So extension (1.5) is needed to obtain scale equivariance. In the scale model, as opposed to location, it matters whether a
given distribution F is considered element F = F; or, for example, element F = F 5 (in the scale model generated by ;). O

Motivated by the information bound, Definition 1.1 is intrinsically statistical. It does not a priori use the assumption
of, and suitable conditions on, densities. These properties rather follow from the definition in case .# is finite. Another
advantage is that Definition 1.1 implies certain topological properties (convexity and lower continuity) of .7.

The definition parallels (Huber, 1981, Def. 4.1) in the location case,

([0 FEx)’
A =S o P

where ¢, subject to f ¢*dF > 0, ranges over the (smaller) set %C‘ of all continuously differentiable functions which
themselves are of compact support. .# is shift invariant.

Huber (1981, p. 79) states vague lower semicontinuity and convexity of .. By Huber (1981, Thm. 4.2), .#(F) is finite iff F
is absolutely continuous with an absolutely continuous density f such that f’/f € L,(F), in which case .4 (F) = f(f’/f)2 dF.

(1.7)

Remark 1.3. The latter result, by arguments of the proof to Theorem 2.2, is still obtained if definition (1.7) is based on %.
Only vague lower semicontinuity of .4 would be weakened to weak continuity (which, however, makes no difference in the
setup of normed measures). The convention 0/0 := 0 could replace the side condition ¢ # 0 a.e. F in (1.7) as well.

The non-suitability of ‘é’cl, and suitability of % instead, is the tribute to the scale model, for which the functions
X > x ¢’ (x) need to be dense in L (Fy) with respect to the punctuated (substochastic) measure Fy introduced in (2.1). O

Fisher information of scale has been treated by Huber (1964, 1981) not in the previous generality but only under suitable
assumptions on densities and, in an auxiliary way, has been reduced to the location case by symmetrization and the log-
transform (Huber, 1981, Sec. 5.6).

2. Main results

Proposition 2.1. .7 is weakly lower semicontinuous and convex.

Zero observations do not contain any information about scale. Removing the mass of any distribution F at zero, we define
the punctuated, possibly substochastic measure Fy by

Fo :=F — F({0})1o, (2.1)
where 1y denotes Dirac measure at 0. In terms of distribution functions, denoting by 1o, the indicator function, we have
Fo(x) = F(x) — (F(0) = F(0—)) 110,00 (%)

Theorem 2.2. For any distribution F on the real line, 5 (F) is finite iff
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